March 20 and September 22
Well I think B hope this helps
<span> Using conservation of energy
Potential Energy (Before) = Kinetic Energy (After)
mgh = 0.5mv^2
divide both sides by m
gh = 0.5v^2
h = (0.5V^2)/g
h = (0.5*2.2^2)/9.81
h = 0.25m
</span>
Integrating the velocity equation, we will see that the position equation is:

<h3>How to get the position equation of the particle?</h3>
Let the velocity of the particle is:

To get the position equation we just need to integrate the above equation:


Then:


Replacing that in our integral we get:


Where C is a constant of integration.
Now we remember that 
Then we have:

To find the value of C, we use the fact that f(0) = 0.

C = -1 / 3
Then the position function is:

Integrating the velocity equation, we will see that the position equation is:

To learn more about motion equations, refer to:
brainly.com/question/19365526
#SPJ4
Answer:
option (B)
Explanation:
Young's modulus is defined as the ratio of longitudinal stress to the longitudinal strain.
Its unit is N/m².
The formula for the Young's modulus is given by

where, F is the force applied on a rod, L is the initial length of the rod, ΔL is the change in length of the rod as the force is applied, A is the area of crossection of the rod.
It is the property of material of solid. So, when the 10 wires are co joined together to form a new wire of length 10 L, the material remains same so the young' modulus remains same.