1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nataly862011 [7]
3 years ago
7

Secondary waves CANNOT travel through?

Physics
1 answer:
kakasveta [241]3 years ago
6 0
The answer would be Liquids. They can pass through solids though. Hope this helped! :)
You might be interested in
At this radius, what is the magnitude of the net force that maintains circular motion exerted on the pilot by the seat belts, th
Ainat [17]

Answer:

Fc=5253 N

Explanation:

Answer:

Fc=5253 N

Explanation:

sequel to the question given, this question would have taken precedence:

"The 86.0 kg pilot does not want the centripetal acceleration to exceed 6.23 times free-fall acceleration. a) Find the minimum radius of the plane’s path. Answer in units of m."

so we derive centripetal acceleration first

ac (centripetal acceleration) = v^2/r

make r the subject of the equation

r= v^2/ac

 ac is 6.23*g which is 9.81

v is 101m/s

substituing the parameters into the equation, to get the radius

(101^2)/(6.23*9.81) = 167m

Now for part

( b) there are two forces namely, the centripetal and the weight of the pilot, but the seat is exerting the same force back due to newtons third law.

he net force that maintains circular motion exerted on the pilot by the seat belts, the friction against the seat, and so forth is the centripetal force.

Fc (Centripetal Force) = m*v^2/r  

So (86kg* 101^2)/(167) =

Fc=5253 N

4 0
3 years ago
A mobile starts with a speed of 250m / s and begins to decelerate at a rate of 3m / s². How fast is it after 45s?
Korvikt [17]

\large{ \underline{ \underline{ \bf{ \purple{Given}}}}}

  • Speed of the mobile = 250 m/s
  • It starts decelerating at a rate of 3 m/s²
  • Time travelled = 45s

\large{ \underline{ \underline{ \bf{ \green{To \: find}}}}}

  • Velocity of mobile after 45 seconds

\large{ \underline{ \underline{ \red{ \bf{Now, \: What \: to \: do?}}}}}

We can solve the above question using the three equations of motion which are:-

  • v = u + at
  • s = ut + 1/2 at²
  • v² = u² + 2as

So, Here a is acceleration of the body, u is the initial velocity, v is the final velocity, t is the time taken and s is the displacement of the body.

\large{ \bf{ \underline{ \underline{ \orange{Solution:}}}}}

We are provided with,

  • u = 250 m/s
  • a = -3 m/s²
  • t = 45 s

By using 1st equation of motion,

⇛ v = u + at

⇛ v = 250 + (-3)45

⇛ v = 250 - 135 m/s

⇛ v = 115 m/s

✤ <u>Final</u><u> </u><u>velocity</u><u> </u><u>of</u><u> </u><u>mobile</u><u> </u><u>=</u><u> </u><u>1</u><u>1</u><u>5</u><u> </u><u>m</u><u>/</u><u>s</u>

<u>━━━━━━━━━━━━━━━━━━━━</u>

4 0
3 years ago
Imagine you are holding an apple. a. Does this apple have energy? How do you know? b. How could you increase the potential energ
Len [333]
A).  The apple has thermal energy, because its temperature is higher
than absolute zero.
It also has chemical energy, because if I eat it, I get a burst of energy
and I become ambitious for a while.
It also has gravitational potential energy, because if I drop it on my foot,
it could bruise one of my piggies.

b).  I could increase its potential energy by lifting it higher, like over my head.

c).  As long as I'm just holding the apple, it doesn't have any kinetic energy. 
I could give it some kinetic energy by throwing it.
Or I could just drop it, and let gravity give it kinetic energy.
7 0
3 years ago
The force of attraction between a -165.0 uC and +115.0 C charge is 6.00 N. What is the separation between these two charges in m
Simora [160]

Answer:

  • The distance between the charges is 5,335.026 m

Explanation:

To obtain the forces between the particles, we can use Coulomb's Law in scalar form, this is, the force between the particles will be:

F = k \frac{q_1 q_2}{d^2}

where k is Coulomb's constant, q_1 and q_2 are the charges and d is the distance between the charges.

Working a little the equation, we can take:

d^2 = k \frac{q_1 q_2}{F}

d = \sqrt{ k \frac{q_1 q_2}{F}}

And this equation will give us the distance between the charges. Taking the values of the problem

k= 9.00 \ 10^9 \frac{N \ m^2}{C^2} \\q_1 = 165.0 \mu C \\q_2 = 115.0 C\\F=- 6.00

(the force has a minus sign, as its attractive)

d = \sqrt{ 9.00 \ 10^9 \frac{N \ m^2}{C^2} \frac{(165.0 \mu C) (115.0 C)}{- 6.00 \ N}}

d = \sqrt{ 9.00 \ 10^9 \frac{N \ m^2}{C^2} \frac{(165.0 \mu C) (115.0 C)}{- 6.00 \ N}}

d = \sqrt{ 28,462,500 \ m^2}}

d = 5,335.026 m

And this is the distance between the charges.

3 0
3 years ago
Explain two ways that static and current electricity are different?
tia_tia [17]
Static electricity<span> is caused by the build up of </span>electrical<span> charges on the surface of objects, while </span>current electricity<span> is a phenomenon from the flow of electrons along a conductor. 2. When objects are rubbed, a loss and/or gain of electrons occurs, which results in the phenomenon of </span>static electricity<span>.</span>
5 0
3 years ago
Other questions:
  • Astronaut A can cover 10 meters per minute walking with the heavy shovel. What does
    9·1 answer
  • A man stands on the roof of a building of height 13.0m and throws a rock with a velocity of magnitude 33.0m/s at an angle of 25.
    14·1 answer
  • Comparativo entre a máquina a vapor de Neu carmen e James Watt!
    5·1 answer
  • During a solar eclipse, the Moon, Earth, and Sun all lie on the same line, with the Moon between the Earth and the Sun. The Moon
    9·1 answer
  • You throw a balloon that floats in the air with a velocity of 2 m / s south . If the wind speed is 5 m / s west , how far south
    6·1 answer
  • Who is Janna Levin:
    6·1 answer
  • A bus starting from rest moves with a uniform acceleration for 2 minutes. If the velocity at the end of 2 minutes is 12 m/s, its
    6·1 answer
  • A wave has a frequency of 0.5 kHz and two particles with a phase difference of \pi /3 are 1.5 cm apart. Calculate: the time peri
    12·1 answer
  • How will the positions of the police car and the truck compare when they have the same speed and why?
    14·1 answer
  • How much thermal energy is
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!