Answer:
The velocity of the hay bale is - 0.5 ft/s and the acceleration is 
Solution:
As per the question:
Constant velocity of the horse in the horizontal, 
Distance of the horse on the horizontal axis, x = 10 ft
Vertical distance, y = 20 ft
Now,
Apply Pythagoras theorem to find the length:


Now,
(1)
Differentiating equation (1) w.r.t 't':


where
= Rate of change of displacement along the horizontal
= Rate of change of displacement along the vertical
= velocity along the x-axis.
= velocity along the y-axis



Acceleration of the hay bale is given by the kinematic equation:





Answer:
27,000 m
450 m/s
Explanation:
Assuming the initial velocity is 0 m/s:
v₀ = 0 m/s
a = 15 m/s²
t = 60 s
A) Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (60 s) + ½ (15 m/s²) (60 s)²
Δy = 27,000 m
B) Find: v_avg
v_avg = Δy / t
v_avg = 27,000 m / 60 s
v_avg = 450 m/s
An independent variable is a variable that does not depend on anything. It is manipulated to determine the value of a dependent variable<span>. The dependent variable is what is being measured in an experiment or evaluated in a mathematical equation and the independent variables are the inputs to that measurement. Example: Time would always be an independent variable because nothing affects time, however, time can affect everything. </span>