1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitriy789 [7]
3 years ago
12

A 20 g ball is fired horizontally with speed v0 toward a 100 g ball hanging motionless from a 1.0-m-long string. the balls under

go a head-on, perfectly elastic collision, after which the 100 g ball swings out to a maximum angle umax = 50. what was v0 ?
Physics
1 answer:
Novay_Z [31]3 years ago
7 0

Sorry but i dont know i was doing this for some point sorry

You might be interested in
The _______ is responsible for determining the frequency of vibration of the air column in the tube within a wind instrument. A.
Vladimir [108]

"A is correct answer." The effective length of the tube is responsible for determining the frequency of vibration of the air column in the tube within a wind instrument. "Hope this helps!" "Have a great day!" "Thank you for posting your question!"

8 0
3 years ago
A 1.50 x 109 kg railroad car moving at 7.00 m/s to the north collides with
barxatty [35]

GIVE ME YOUR MONEY

Explanation:

8 0
3 years ago
A fish looks up toward the surface of a pond and sees the entire panorama of clouds, sky, birds, and so on, contained in a narro
Maksim231197 [3]

Answer:

Total internal reflection is going on. The refractive index of water is about 1.3, so sin 90/sin r=1/sinr=1.3. So the fish can only see objects outside the water within about 50 degrees of the vertical

7 0
4 years ago
Find electric field at point p which is a distance l away from the both +q and -q
denis-greek [22]

Answer:

\frac{1}{4\times(pie)\times\text{E}} \times\frac{q}{I^{2} }+\frac{1}{4\times(pie)\times\text{E}} \times\frac{-q}{I^{2} }

Explanation:

As given point p is equidistant from both the charges

It must be in the middle of both the charges

Assuming all 3 points lie on the same line

Electric Field due a charge q at a point ,distance r away

=\frac{1}{4\times(pie)\times\text{E}} \times\frac{q}{r^{2} }

Where

  • q is the charge
  • r is the distance
  • E is the permittivity of medium

Let electric field due to charge q be F1 and -q be F2

I is the distance of P from q and also from charge -q

⇒

F1=\frac{1}{4\times(pie)\times\text{E}} \times\frac{q}{I^{2} }

F2=\frac{1}{4\times(pie)\times\text{E}} \times\frac{-q}{I^{2} }

⇒

F1+F2=\frac{1}{4\times(pie)\times\text{E}} \times\frac{q}{I^{2} }+\frac{1}{4\times(pie)\times\text{E}} \times\frac{-q}{I^{2} }

8 0
4 years ago
The overall energy involved in the formation of CsCl from Cs(s) and Cl2(g) is −443 kJ/mol. Given the following information: heat
german

Answer :  The magnitude of the lattice energy for CsCl is, 667 KJ/mole

Explanation :

The steps involved in the born-Haber cycle for the formation of CsCl :

(1) Conversion of solid calcium into gaseous cesium atoms.

Cs(s)\overset{\Delta H_s}\rightarrow Cs(g)

\Delta H_s = sublimation energy of calcium

(2) Conversion of gaseous cesium atoms into gaseous cesium ions.

Ca(g)\overset{\Delta H_I}\rightarrow Ca^{+1}(g)

\Delta H_I = ionization energy of calcium

(3) Conversion of molecular gaseous chlorine into gaseous chlorine atoms.

Cl_2(g)\overset{\frac{1}{2}\Delta H_D}\rightarrow Cl(g)

\Delta H_D = dissociation energy of chlorine

(4) Conversion of gaseous chlorine atoms into gaseous chlorine ions.

Cl(g)\overset{\Delta H_E}\rightarrow Cl^-(g)

\Delta H_E = electron affinity energy of chlorine

(5) Conversion of gaseous cations and gaseous anion into solid cesium chloride.

Cs^{1+}(g)+Cl^-(g)\overset{\Delta H_L}\rightarrow CsCl(s)

\Delta H_L = lattice energy of calcium chloride

To calculate the overall energy from the born-Haber cycle, the equation used will be:

\Delta H_f^o=\Delta H_s+\Delta H_I+\Delta H_D+\Delta H_E+\Delta H_L

Now put all the given values in this equation, we get:

-443KJ/mole=76KJ/mole+376KJ/mole+121KJ/mole+(-349KJ/mole)+\Delta H_L

\Delta H_L=-667KJ/mole

The negative sign indicates that for exothermic reaction, the lattice energy will be negative.

Therefore, the magnitude of the lattice energy for CsCl is, 667 KJ/mole

5 0
3 years ago
Other questions:
  • The application of force over distance is known as
    9·1 answer
  • Reducing waste and recycling things are ways to conserve energy. True false
    5·2 answers
  • Electrical Safety: What should you do to a hot plate before turning it on? More than one answer may be correct. Check that the l
    6·1 answer
  • Can anyone help me? Physics
    15·1 answer
  • What is question 10—20 PTS!!
    9·1 answer
  • What is the fundamental source of electromagnetic radiation?
    6·1 answer
  • After using a thermometer where should it be placed
    11·1 answer
  • Of the ball is
    9·1 answer
  • Could there ever be a situation where a small sports car could have more inertia than a big bus?​
    7·1 answer
  • 6) A boat crosses a river at a constant engine speed of 2.0 m/s under pointed Directly west. The river runs directly south at 2.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!