Answer:
L1/L2 = 6.47
Explanation:
In order to calculate the ratio of the lengths of the wires you use the following formula for the resistivity of a wire:
(1)
r: radius of the cross-sectional area of the wire
R: resistance of the wire
L: length of the wire
Then, you have for each wire:

The resistance and radius of the wires are the same, that is, R1 = R2 = R and r1 = r2 = r. By taking into account this last and dive the equation for the wire 2 into the wire 1, you obtain:

The ratio of the lengthd of the wires is L1/L2 = 6.47
Answer:
At the highest point and at the lowest point the velocity of the mass hung on a spring = 0
Explanation:
Simple Harmonic Motion ( S.H.M) : Simple harmonic motion can be defined as a type of motion were a body vibrates or moves to and fro along a straight line under the influence of a force, so that the acceleration of the body towards a fixed point (equilibrium position) is proportional to its distance or displacement from that point. Examples of bodies undergoing simple harmonic motion are
<em>⇒ The motion of a mass hung on a spring.</em>
<em>⇒ The motion of a simple pendulum</em>
<em>⇒ The motion of a loaded test - tube in a liquid.</em>
Motion of a mass hung on a spring:When a mass is hung to one end spring and other end is firmly clamped to a rigid support.(i)When the mass is in motion, (ii)it pulled down to its lowest point, passes through it equilibrium position (iii) goes to its highest point.
<em>(1) At the lowest and the highest point during the motion of a mass hung a spring, the velocity = 0</em>
<em>(2) At the equilibrium point or unstretched position the velocity is maximum</em>
<em></em>
<em></em>