You can see what is the electron configuration by looking at the layout of the periodic tables. the first shell will have a max of 2 electrons on it, once the first one is filled up a second is added with a max of 8 electrons on it and so on with the 8 as a max. so He, and H will only have them on the first shell but every horizontal row is a new valence or outer shell. so lets say for carbon look at the number in the upper left corner of the box will tell you the total number of electrons you will need. so start off with the first two electrons on the first shell. now you know that carbon needs 6 electrons in total, since you can only have a max of 2 on the first shell you need a second one so on the second one you will have to have the remaining 4. now elements are most stable when they have a full valence shell becuase those are the only electrons that will react with others. so if carbon has 4 it wants to either gain or lose 4 electrons so you could say that it would bond with 4H since each H will donate 1 electron to the C valence shell making all the H and C stable. CH4(methane)
Because the air in their wings helps them fly
The IMA of the pulley shown is 2.
(Mass does not affect the pendulum's swing. The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.)
Answer:
B.The linear velocity of the gears is the same. The linear velocity is 432π centimeters per minute.
Explanation:
As we know that the small gear completes 24 revolutions in 20 seconds
so the angular speed of the smaller gear is given as


Now we know that the tangential speed of the chain is given as

so we have



Since both gears are connected by same chain so both have same linear speed and hence correct answer will be
B.The linear velocity of the gears is the same. The linear velocity is 432π centimeters per minute.