The strength of a field force changes with distance from the sourceof the field-stronger closer to the source, weaker farther away from the source. The source can be either a mass, a charged particle, or a magnetic pole.
The greenhouse effect<span> occurs when Earth's atmosphere traps </span>solar<span>radiation ... infrared (IR) and other </span>types<span> of radiation that are invisible to the human eye. UV radiation has a shorter wavelength and a higher </span>energy<span> level </span>
That situation is called <em>interference </em>.
The charge on the particle is 5.6 × 10⁻¹¹ C.
<h3>Calculation:</h3>
The magnitude of an electric field produced by a charge is given by:
E = q/ 4πε₀r²
where,
E = electric field
q = charge
r = distance
1/4πε₀ = 8.99 × 10⁹ Nm²/C²
Given,
E = 2.0 N/C
r = 50 cm = 0.5 m
To find,
q =?
Put the values in the above equation:
E = q/ 4πε₀r²
q = E (4πε₀r²)
q = 2.0 × (0.50²)/ 8.99 × 10⁹
q = 5.6 × 10⁻¹¹ C
Therefore, the particle has a charge of 5.6 × 10⁻¹¹ C.
<h3>What is an electric field?</h3>
The physical field that surrounds each electric charge and acts to either attract or repel all other charges in the field is known as an electric field. Electric charges or magnetic fields with different amplitudes are the sources of electric fields.
I understand the question you are looking for is this:
A charged particle produces an electric field with a magnitude of 2.0 N/C at a point that is 50 cm away from the particle. What is the magnitude of the particle's charge?
Learn more about electric field here:
brainly.com/question/14857134
#SPJ4
<span>Depends on the precision you're working to.
proton mass ~ 1.00728 amu
neutron mass ~ 1.00866 amu
electron mass ~ electron mass = 0.000549 amu
Binding mass is:
mass of constituents - mass of atom
Eg for nitrogen:
(7*1.00728)-(7*1.00866)-(7*0.000549)
-14.003074 = 0.11235amu
Binding energy is:
E=mc^2 where c is the speed of light. Nuclear physics is usually done in MeV[1] where 1 amu is about 931.5MeV/c^2. So:
0.11235 * 931.5 = 104.6MeV
Binding energy per nucleon is total energy divided by number of nucleons. 104.6/14 = 7.47MeV
This is probably about right; it sounds like the right size!
Do the same thing for D/E/F and recheck using your numbers & you shouldn't go far wrong :)
1 - have you done this? MeV is Mega electron Volts, where one electronVolt (or eV) is the change in potential energy by moving one electron up a 1 volt potential. ie energy = charge * potential, so 1eV is about 1.6x10^-19J (the same number as the charge of an electron but in Joules).
It's a measure of energy, but by E=mc^2 you can swap between energy and mass using the c^2 factor. Most nuclear physicists report mass in units of MeV/c^2 - so you know that its rest mass energy is that number in MeV.</span>