Answer:
30.63 m
Explanation:
Using y = ut + 1/2gt² where u = initial speed of block = 0 m/s, g = acceleration due to gravity = 9.8 m/s² and t = time of fall = 2.5 s and y = height of fall.
So, substituting the values of the variables into the equation, we have
y = ut + 1/2gt²
y = 0 m/s × 2.5 s + 1/2 × 9.8 m/s² × (2.5 s)²
y = 0 m + 4.9 m/s² × 6.25 s²
y = 0 m + 30.625 m
y = 30.625 m
y ≅ 30.63 m
So, the brick fell 30.63 m
Answer:
VAB = 20km/hr
Explanation:
<u>Given the following data;</u>
Velocity of car A, VA = 60km/hr
Velocity of car B, VB = 80km/hr
To find the relative velocity of B w.r.t A, VAB;
Since the two cars are moving in the same direction, we have;
VAB = VB - VA
Substituting into the equation, we have;
VAB = 80 - 60
<em>VAB = 20km/hr</em>
Therefore, the relative velocity of car B with respect to car A is 20 kilometers per hour.
Refraction is the change in direction of a wave.
Diffraction is the bending of a wave around a barrier.
The initial velocity of the ball is 1.01 m/s
Explanation:
The motion of the ball rolling off the desk is a projectile motion, which consists of two independent motions:
- A uniform horizontal motion with constant horizontal velocity
- A vertical accelerated motion with constant acceleration (
, acceleration due to gravity)
We start by analyzing the vertical motion: we can find the time of flight of the ball by using the following suvat equation

where
s = 1.20 m is the vertical displacement (the height of the desk)
u = 0 is the initial vertical velocity

t is the time of flight
Solving for t,

Now we analyze the horizontal motion. We know that the ball covers a horizontal distance of
d = 0.50 m
in a time
t = 0.495 s
Therefore, since the horizontal velocity is constant, we can calculate it as

So, the ball rolls off the table at 1.01 m/s.
Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly