Answer:
A. we can use sulfuric acid to prepare PbSO4
To determine which order of the reaction it is, first we need to calculate the rate of change of moles.
the data is as follows
time 0 40 80 120 160
moles 0.100 0.067 0.045 0.030 0.020
Q1)
for the first 40 s change of moles ;
= -d[A] / t
= - (0.067-0.100)/40s
= 8.25 x 10⁻⁴ mol/s
for the next 40 s
= -(0.045-0.067)/40
= 5.5 x 10⁻⁴ mol/s
the 40 s after that
= -(0.030-0.045)/40 s
= 3.75 x 10⁻⁴ mol/s
k - rate constant
and A is the only reactant that affects the rate of the reaction
rate = k [A]ᵇ
8.25 × 10⁻⁴ mol/s = k [0.100 mol]ᵇ ----1
5.5 x 10⁻⁴ mol/s = k [0.067 mol]ᵇ -----2
divide the 2nd equation by the 1st equation
1.5 = [1.49]ᵇ
b is almost equal to 1
Therefore this is a first order reaction
Q2)
to find out the rate constant(k), we have to first state the equation for a first order reaction.
rate = k[A]ᵇ
As A is the only reactant thats considered for the rate equation.
Since this is a first order reaction,
b = 1
therefore the reaction is
rate = k[A]
substituting the values,
8.25 x 10⁻⁴ mol/s = k [0.100 mol]
k = 8.25 x 10⁻⁴ mol/s /0.100mol
= 8.25 x 10⁻³ s⁻¹
Answer:
66s^-1 will be 1/66
then to convert to minute you multiply by 69
1/66 x 60 = 3960 mins
Answer:
a) The concentration of drug in the bottle is 9.8 mg/ml
b) 0.15 ml drug solution + 1.85 ml saline.
c) 4.9 × 10⁻⁵ mol/l
Explanation:
Hi there!
a) The concentration of the drug in the bottle is 294 mg/ 30.0 ml = 9.8 mg/ml
b) The drug has to be administrated at a dose of 0.0210 mg/ kg body mass. Then, the total mass of drug that there should be in the injection for a person of 70 kg will be:
0.0210 mg/kg-body mass * 70 kg = 1.47 mg drug.
The volume of solution that contains that mass of drug can be calculated using the value of the concentration calculated in a)
If 9.8 mg of the drug is contained in 1 ml of solution, then 1.47 mg drug will be present in (1.47 mg * 1 ml/ 9.8 mg) 0.15 ml.
To prepare the injection, you should take 0.15 ml of the concentrated drug solution and (2.0 ml - 0.15 ml) 1.85 ml saline
c) In the injection there is a concentration of (1.47 mg / 2.0 ml) 0.735 mg/ml.
Let´s convert it to molarity:
0.735 mg/ml * 1000 ml/l * 0.001 g/mg* 1 mol/ 15000 g = 4.9 × 10⁻⁵ mol/l
Answer:
Explanation:
The gas ideal law is
PV= nRT (equation 1)
Where:
P = pressure
R = gas constant
T = temperature
n= moles of substance
V = volume
Working with equation 1 we can get

The number of moles is mass (m) / molecular weight (mw). Replacing this value in the equation we get.
or
(equation 2)
The cylindrical container has a constant pressure p
The volume is the volume of a cylinder this is

Where:
r = radius
h = height
(pi) = number pi (3.1415)
This cylinder has a radius, r and height, h so the volume is 
Since the temperatures has linear distribution, we can say that the temperature in the cylinder is the average between the temperature in the top and in the bottom of the cylinder. This is:
Replacing these values in the equation 2 we get:
(equation 2)