Answer:
157.8 J
Explanation:
m = mass of the cylinder = 7 kg
h = height difference in top and bottom of the incline = 2.3 m
g = acceleration due to gravity = 9.8 m/s²
TE = Total Energy at the bottom
PE = Gravitational potential energy at the top
Using conservation of energy
Total Energy at the bottom = Gravitational potential energy at the top
TE = PE
TE = m g h
TE = (7) (9.8) (2.3)
TE = 157.8 J
Answer: 1037 miles per hour
Explanation: In order to see the sun in the same position in the sky, you would have to travel against the speed of rotation of the earth, because this is what causes the sun to appear in a constantly changing position.
Because of this, we will have to calculate the speed of rotation of the earth. To get started, we must know the circumference of the earth. Assuming the circumference formula for a sphere,

Where R is the radius of the earth, we find that the perimeter of the earth is approximately 24881 miles. The equation to calculate speed is given by

Because the earth completes one rotation in 24 hours, we have to find the speed of rotation as the perimeter of the earth divided by 24 hours.
The obtained result is 1037 miles per hour.
You would have to travel at 1037 miles per hour in the direction opposite to the direction the rotation is ocurring in.
Underline the words then eliminate the ones that arent part of the problem!
Answer:
The final velocity of the second car is 57 m/s south.
Explanation:
This is an elastic collision between two train cars. In this case, the total kinetic energy between the two bodies will remain the same.
The formula to apply is :

where ;

Given in the question that;

Apply the formula as;

{14650*18}+{3825*11} = {14650 *6} + {3825 * v₂f}
263700+42075=87900 + 3825v₂f
305775 =87900 + 3825v₂f
305775-87900 = 3825v₂f
217875=3825v₂f
217875/3825 =v₂f
56.96 = v₂f
<u>57 m/s = v₂f { nearest whole number}</u>
You could say almost anything.
For example:
phones,
cars,
computers,
clocks,
hydraulics,
bicycles,
the hadron collider,
Planes,
and so on.