Answer:
True
Explanation:
kinetic energy is proportional to temperature
Answer:
36,67 degrees Celsius
Explanation:
The simplest way to approach this problem, given the information provided, is to simply start with the speed difference.
Goal: 353 m/s
Start: 343 m/s (at 20 degrees Celsius).
Difference: 10 m/s
Variation rate: 0.60 m/s/d (d = degree)

So, 16,67 degrees more than the starting point.
The temperature will then be 36.67 degrees Celsius, when the sound travels at the speed of 353 m/s.
Well, I'll try to write the formula in a way that's not confusing,
but I'm afraid it might be slightly confusing anyway.
When you're working with dB, the basic rule is
A change of 10 dB means either multiplying or dividing by 10 .
Multiply something by 10 ==> it increases by 10 dB.
Divide something by 10 ==> it decreases by 10 dB.
It turns out that another way to write all of this is . . .
An increase of 10 dB ===> multiply the original amount by 10¹
An increase of 20 dB ===> multiply the original amount by 10²
An increase of, say, 7 dB ===> multiply the original amount by 10⁰·⁷
A decrease of 10 dB ===> multiply the original amount by 10⁻¹
A decrease of 30 dB ===> multiply the original amount by 10⁻³
A decrease of, say, 13 dB ===> multiply the original amount by 10⁻¹·³
This question says: The sound increases by 5 dB .
That means the original 'intensity' or 'power' of the sound
is multiplied by
10⁰·⁵ = √10 = about 3.162 (rounded) .
From the choices listed, the closest one is (c).
Answer:
only thing I think of when I see that is 'Just Wondering'
Explanation: