Answer:
The correct option is;
The index of refraction of the second medium is lower
Explanation:
The index of refraction of a material indicates the magnitude of the optical density of a material. The index of refraction or the refractive index, n, are indices (ratio) of the speed of light through an optically dense medium relative to the speed of light through a vacuum.
The definition of the refractive index is the number of times light travelling through a medium would be slower than light travelling through vacuum
Therefore, the index of refraction of a second medium that is less optically dense than a first medium from which light originates and travels through it would be lower than the index of refraction of the first medium
Answer:
The energy carried by an electromagnetic wave is proportional to the frequency of the wave. The wavelength and frequency of the wave are connected via the speed of light: Electromagnetic waves are split into different categories based on their frequency (or, equivalently, on their wavelength).
Explanation:
Answer:C
Explanation:
When a constant horizontal force is applied to the box, box started moving in the horizontal direction such that it moves with constant velocity 
Constant velocity implies that net force on the box is zero
i.e. there must be an opposing force which is equal to the applied force and friction force can serve that purpose.
So option c is the correct choice.
Given the speed and the distance, to find time you can use the formula speed is equal to distance over time. From there you can manipulate the equation for time to equal the distance divided by speed. Time is equal to 18.4 meters divided by 35m/s which equals 0.526 seconds.