The force on charge Y is the same as the force on charge X
Explanation:
We can answer this problem by applying Newton's third law of motion, which states that:
"When an object A exerts a force on object B (action force), then object B exerts an equal and opposite force on object A (reaction force)"
In this problem, we can identify object A as charge X and object B as charge Y. The magnitude of the electrostatic force between them is given by
(1)
where:
is the Coulomb's constant
are the two charges
r is the separation between the two charges
According to Newton's third law, therefore, the magnitude of the force exerted by charge X on charge Y is the same as the force exerted by charge Y on charge X (and it is given by eq.(1)), however their directions are opposite.
Learn more about Newton's third law:
brainly.com/question/11411375
#LearnwithBrainly
Answer:
A) x4
Explanation:
Magnification is equal to image size divided by the actual size, or M = I/A.
The image size is the student's drawing, which is 28.8 cm, and the actual size is 7.2 cm. Divide them, and cancel out the units, and you should get:
28.8 cm/7.2 cm = 4
Before we dive into how electricity is used around the home it is worth putting household electricity use in perspective.
Household electricity use generally makes up about a third of total electricity consumption in most developed nations. Using data from the European Union we can give an example of how electricity demand is split among different sectors.
<span>
Read more at http://shrinkthatfootprint.com/how-do-we-use-electricity#DfE5FuAPpy6Z5TBH.99
</span>
Answer:
in the parallel connection the light bulbs shine less than in the series connection
Explanation:
In a series circuit the current through the whole circuit is the same, therefore the power (brightness) of each bulb is
P = i² R
where R is the resistance of each bulb and i the current of the circuit.
If we connect the light bulbs and the cells in parallel, the current in the circuit is the sum of the east that passes through each light bulb,
i = i₁ + i₂
if the two light bulbs are the same
i = 2 i₁
i₁ = i / 2
so the power of each bulb is is
P = i₁² R
P = R i² / 4
P = ¼ P_initial
Therefore we see that in the parallel connection the light bulbs shine less than in the series connection
The quantity work has to do with a force causing a displacement. Work has nothing to do with the amount of time that this force acts to cause the displacement. Sometimes, the work is done very quickly and other times the work is done rather slowly. For example, a rock climber takes an abnormally long time to elevate her body up a few meters along the side of a cliff. On the other hand, a trail hiker (who selects the easier path up the mountain) might elevate her body a few meters in a short amount of time. The two people might do the same amount of work, yet the hiker does the work in considerably less time than the rock climber. The quantity that has to do with the rate at which a certain amount of work is done is known as the power. The hiker has a greater power rating than the rock climber.
Power is the rate at which work is done. It is the work/time ratio. Mathematically, it is computed using the following equation.
Power = Work / time
or
P = W / t