Answer:

Explanation:
We know that the frequency of the nth harmonic is given by
, where
is the fundamental harmonic. Since we have the values of two consecutive frequencies, we can do:

Which for our values means (we do not need the value of <em>n</em>, that is, which harmonics are the frequencies given):

Now we turn to the formula for the vibration frequency of a string (for the fundamental harmonic):

So the tension is:

Which for our values is:

A skill set is explicitly taught or an activity is completed
Answer:
Later high school years and freshman year of college
Explanation:
The transition from high school to college is an important developmental milestone that holds the potential for personal growth and behavioral change. A cohort of 2,025 students was recruited during the summer before they matriculated into college and completed Internet-based surveys about their participation in a variety of behavioral risks during the last three months of high school and throughout the first year of college. Alcohol use, marijuana use, and sex with multiple partners increased during the transition from high school to college, whereas driving after drinking, aggression, and property crimes decreased. Those from rural high schools and those who elected to live in private dormitories in college were at highest risk for heavy drinking and driving after drinking.
Explanation:
Since, it is mentioned the there occurs no change in the temperature. This also means that there will occur no change in thermal energy of the system.
Hence,
= 0. And, as
= 0 then there will be no work involved. This means that total energy added to the house will return to the outside air as heat.
Therefore,
Q = -(19000 J + 2000 J)
= -21000 J
or, |Q| = 21000 J
Thus, we can conclude that the magnitude of the energy transfer between the house and the outside air is 21000 J.
The second ionization energy is the energy required to remove the <u>second </u>electron after a <u>valence</u> one has been removed.
<h3><u>Explanation:</u></h3>
For an element, the first ionization energy is defined as the amount of energy required to remove one electron from the outermost valence shell of a neutral atom. Removing one electron increases the number of protons, making it a 1+ ion.
The nucleus (protons) has more bonding to the electrons with negative charge and thus more energy is required if another electron needs to be removed. This higher energy required to remove second electron from a 1+ ion (after the first one has been removed) is termed as the second ionization energy. Second ionization energy leads to formation of a 2+ ion. Similarly, third ionization energy is higher than second ionization energy.