P=m x v =60 x 7.0= 420
total momentum = 420 x 2,000,000,000=dnt have a calculator
thier effect would shake the earth and kill some organism because they jump up at the same time and they wil probably land the same time .
Answer:
* Experiment with a higher range of materials
* Use a galvanometer.
* Vary in number of coils of the electromagnet
Explanation:
This is an experiment of electricity and magnetism, in general the best way to improve the results are:
* Experiment with a higher range of materials
allowing to know the scope of the initial assumptions
* Use a galvanometer.
The more accurate the readings the error of the derived quantities is the less which will improve the precision of the experiment.
* Vary in number of coils of the electromagnet
Since it allows to have greater magnetic fields and therefore expand the range of measurements
The speed of the water in the wider part will be 1.194 m/sec. Speed is a time-based quantity. Its SI unit is m/sec.
<h3> What is speed?</h3>
Speed is defined as the rate of change of the distance or the height attained.
The given data in the problem is;
The initial diameter is,
initial radius,

The initial crossection area;

The final crossection area;

The initial flow rate is;
R = density ×velocity ×area

The speed of the water in the wider part will be;
From the continuity equation;

Hence, the speed of the water in the wider part will be 1.194 m/sec.
To learn more about the speed, refer to the link;
brainly.com/question/7359669
#SPJ1
Answer:
Approximately
, assuming that
.
Explanation:
Let
and
denote the mass and acceleration of Spiderman, respectively.
There are two forces on Spiderman:
- Downward gravitational attraction from the earth:
. - Upward tension force from the strand of web
.
The directions of these two forces are exactly opposite of one another. Besides, because Spiderman is accelerating upwards, the magnitude of
(which points upwards) should be greater than that of
(which points downwards towards the ground.)
Subtract the smaller force from the larger one to find the net force on Spiderman:
.
On the other hand, apply Newton's Second Law of motion to find the value of the net force on Spiderman:
.
Combine these two equations to get:
.
Therefore:
.
By Newton's Third Law of motion, Spiderman would exert a force of the same size on the strand of web. Hence, the size of the force in the strand of the web should be approximately
(downwards.)
Answer:
58.8 N
Explanation:
The normal force is calculated as equal to the perpendicular component of the gravitational force.
Thus; N = mg
We are given m = 6 kg
Thus;
N = 6 × 9.8
N = 58.8 N
Thus, magnitude of normal force on the rock = 58.8 N