If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
Answer:

Explanation:
Using the conservation of energy we have:

Let's solve it for v:

So the speed at the lowest point is 
Now, using the conservation of momentum we have:

Therefore the speed of the block after the collision is 
I hope it helps you!
Answer:
Part a)
Mass of m2 is given as

Part b)
Angular acceleration is given as

Part c)
Tension in the rope is given as

Explanation:
Part a)
When m1 and m2 both connected to the cylinder then the system is at rest
so we can use torque balance here




Part b)
When block m_2 is removed then system becomes unstable
so force equation of mass m1

also we have

now we have




so angular acceleration is given as



Part c)
Tension in the rope is given as



To solve this problem it is necessary to apply the concepts related to frequency as a function of speed and wavelength as well as the kinematic equations of simple harmonic motion
From the definition we know that the frequency can be expressed as

Where,


Therefore the frequency would be given as


The frequency is directly proportional to the angular velocity therefore



Now the maximum speed from the simple harmonic movement is given by

Where
A = Amplitude
Then replacing,


Therefore the maximum speed of a point on the string is 3.59m/s
Answer:
depth of well is 163.30 m
Explanation:
Given data
speed of sound = 343 m/s
timer = 6.25 s
to find out
depth of well
solution
let us consider depth d
so equation will be
depth = 1/2 ×g ×t² ..............1
and
depth = velocity of sound × time .................2
here we have given time 6.25 that is sum of 2 time
when stone reach at bottom that time
another is sound reach us after stone strike on bottom
so time 1 + time 2 = 6.25 s
so from equation 1 and 2 we get
1/2 ×g ×t² = velocity of sound × time
1/2 ×9.8 × t1² = 343 × (6.25 - t1 )
t1 = 5.77376 sec
so height = 1/2 ×g ×t²
height = 1/2 ×9.8 × (5.773)²
height = 163.30 m