The right half will be a new bar magnet of 2cm with north pole on the right side and south pole on teh left.
Part 1
When the solar atmosphere accumulates a lot of magnetic energy
to a point that cannot accumulate more, all that magnetic energy is suddenly released,
and with it, a lot of radiation. So much, that in fact it covers all of the
electromagnetic spectrum; from radio waves to gamma rays. That burst of
radiation is called a solar flare. In a single solar flare the amount of
radiation released is millions of times greater than all the nuclear bombs in
the face if the earth exploding together. Lucky for us, most of the high-energy
radiation dissipates before reaching the Earth, and the radiation that do reach
us, is deflected by the Earth’s magnetic field.
Part 2
1. Not all the radiation
of solar flares that reach the Earth is deflected by its magnetic field; some
of them reach us and charges the upper atmosphere with ionized particles. Those
particles react with the gases in the atmosphere and produce a light; that
light is what we call Auroras borealis or southern nights; One the most beautiful
natural spectacles in earth, who thought Auroras begin their lives as deadly
solar flares.
2. Solar flares
contain a lot of high-energy radiation that is extremely dangerous for our
electronic devices; when they reach the Earth, they can damage sensible
electronics like satellites. A very powerful solar flare could even damage all
the electronic devices on the surface of the Earth.
A)acceleration is in the direction of motion
Answer:
A
Explanation:
The equation of power is defined as Power = Workdone/Time Taken
And workdone = Force x Distance so using these equations we get they workdone is, 200x 10 = 2000Nm.
Dividing workdone with time will yield power, 2000 ÷ 8 = 250 Nm/s = 250W.
Using the pressure law (P1 x V1)/ T1 = (P2 x V2)/ T2 where P1= the initial pressure V1= initial volume T1= initial temperature and P2= the final pressure V2= the final volume T2 = the final temperature and temperature is always in kelvin