Answer:
0.074 V
Explanation:
Parameters given:
Number of turns, N = 121
Radius of coil, r = 2.85 cm = 0.0285 m
Time interval, dt = 0.179 s
Initial magnetic field strength, Bin = 55.1 mT = 0.0551 T
Final magnetic field strength, Bfin = 97.9 mT = 0.0979 T
Change in magnetic field strength,
dB = Bfin - Bin
= 0.0979 - 0.0551
dB = 0.0428 T
The magnitude of the average induced EMF in the coil is given as:
|Eavg| = |-N * A * dB/dt|
Where A is the area of the coil = pi * r² = 3.142 * 0.0285² = 0.00255 m²
Therefore:
|Eavg| = |-121 * 0.00255 * (0.0428/0.179)|
|Eavg| = |-0.074| V
|Eavg| = 0.074 V
It's lead. That's why the "apron" is so heavy.
I think the elevation of Y and Z are the following:
<span>Y=3200,
Z=2900 </span>
Answer:
Part a)

Part b)

Part C)

Part d)
Due to large magnitude of friction between road and the car the momentum conservation may not be valid here as momentum conservation is valid only when external force on the system is zero.
Explanation:
Part a)
As we know that car A moves by distance 6.1 m after collision under the frictional force
so the deceleration due to friction is given as



now we will have




Part b)
Similarly for car B the distance of stop is given as 4.4 m
so we will have


Part C)
By momentum conservation we will have



Part d)
Due to large magnitude of friction between road and the car the momentum conservation may not be valid here as momentum conservation is valid only when external force on the system is zero.
The answer is D.<span>longitudinal</span>