Answer:
Protons and neutrons which packed tightly into central core of the atom.
Explanation:
Atoms are composed of three subatomic particle; electron, proton and neutron. Electrons are negatively charged, protons are positively charged whereas neutrons are neutral, hence does not have any charge.
Out of three, protons and neutrons are present in the nucleus of the atom.
Nucleus is the central part of the atom possessing most of the mass of the atom. In the nucleus, protons and neutrons are tightly packed with the help of nuclear force.
Electrons are present around the nucleus also called electron cloud.
Therefore, nucleus are composed of protons and neutrons which packed tightly into central core of the atom
Answer:
The reaction would shift toward the reactants
When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm
Explanation:
For the reaction:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Where K is defined as:

As initial pressures of all 3 gases is 1.0atm, reaction quotient, Q, is:

As Q > K, <em>the reaction will produce more NH₃ until Q = K consuming N₂ and H₂.</em>
Thus, there are true:
<h3>The reaction would shift toward the reactants</h3><h3>When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm</h3>
<em />
There are 4 significant figures! Start counting after the first non-zero digit :)
Hope this helps.
Answer:
<em>The electrons in an atom can only occupy certain allowed energy levels to a lower one</em>, the excess energy is emitted as a photon of light, with its wavelength dependent on the change in electron energy. This is why an atom can only emit specific wavelengths of light and not every possible wavelength.
The mass of CO₂ gas = 4.312 g
<h3>Further explanation</h3>
Reaction
NaHCO₃ (s) + HCl (aq) → NaCl (aq) + H₂O (aq) + CO₂ (g)
Find limiting reactant
mol NaHCO₃

mol HCl

Limiting reactant : NaHCO₃ (smaller)
mol CO₂ = mol NaHCO₃ = 0.098
mass CO₂ :
