Fractional Distillation is the answer
The pressure of the CO₂ = 0.995 atm
<h3>Further explanation</h3>
The complete question
<em>A student is doing experiments with CO2(g). Originally, a sample of gas is in a rigid container at 299K and 0.70 atm. The student increases the temperature of the CO2(g) in the container to 425K.</em>
<em>Calculate the pressure of the CO₂ (g) in the container at 425 K.</em>
<em />
<em />
Gay Lussac's Law
When the volume is not changed, the gas pressure is proportional to its absolute temperature
P₁=0.7 atm
T₁=299 K
T₂=425 K
<em />
Rocks are minerals, made up of many minerals. There are 3 types of rocks which are Igneous, Sedementary, and Metamorphic.
<span>Let's assume
that the oxygen gas has ideal gas behavior.
Then we can use ideal gas formula,
PV = nRT</span>
Where, P is the pressure of the gas (Pa), V is the volume of the gas
(m³), n is the number of moles of gas (mol), R is the universal gas
constant ( 8.314 J mol⁻¹ K⁻¹) and T is temperature in Kelvin.
<span>
P = 2.2 atm = 222915 Pa
V = 21 L = 21 x 10</span>⁻³ m³
n = ?
R = 8.314 J mol⁻¹ K⁻¹
<span>
T = 87 °C = 360 K
By substitution,
</span>222915 Pa x 21 x 10⁻³ m³ = n x 8.314 J mol⁻¹ K⁻<span>¹ x 360 K
n
= 1.56</span><span> mol</span>
<span>
Hence, 1.56 moles of the oxygen gas are </span><span>
left for you to breath.</span><span>
</span>
Answer:
D. The amount of heat required to increase the temperature of 1 g of a substance by 1 °C.
Explanation:
Specific heat is defined as the amount of heat needed to raise a unit of mass of a compound by one degree on the temperature scale.
The gram is constituted as a unit of mass, and the degree Celsius as a unit of temperature, therefore, the specific heat can be defined as the amount of heat required to increase the temperature of 1 g of a substance by 1 °C.