1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetlana [45]
3 years ago
5

Need help with chemistry question

Chemistry
1 answer:
horrorfan [7]3 years ago
5 0

This is a multiple question and here are all the answers.

Qestion 1.) Which is not a permissible set of quantum numbers? Identify the subshell (if the quantum numbers identify a possible state).

I. n = 2, ℓ = 0, mℓ = 0

II. n = 3, ℓ = 2, mℓ = 2

III. n = 2, ℓ = 1, mℓ = –1

IV. n = 3, ℓ = 3, mℓ = 0

V. n = 4, ℓ = 3, mℓ = –3

Answer:

  • The combination that is not permissible is IV. n = 3, ℓ = 3, mℓ = 0.

  • Se below to identify the subshells.

Explanation:

The electrons are identified by a set of four quantum numbers.

The first quantum number, n, is the principal quantum number and it tells the shell. The second quantum number,ℓ , is the azymuthal quantum number and it tells the subshell.

The letters used to indicate the subshells are:

  s:  ℓ  = 0

  p:  ℓ  = 1

  d:  ℓ  = 2

  f:  ℓ  = 3

The third and fourth quantum numbers are mℓ (magnetic quantum number) and s (spin).

The rules that apply to predict which quantum numbers are possible are:

  • n: 1, 2, 3, 4, 5, 6, 7 (an integer greater than 0)

  • ℓ: 0, 1, 2, 3, ..., n-1 (an integer less than n)

  • mℓ: an integer from - ℓ to + ℓ

  • s: - 1/2 or +1/2

Two electrons in an atom cannot have the same set of 4 quantum numbers.

With that:

I. n = 2, ℓ = 0, mℓ = 0

  • This combination of three quantum numbers is permissible, since n is a positive integer, ℓ is less than n, and mℓ is in the interval +ℓ  to - ℓ.

  • The combination n = 2 and ℓ = 0 means the subshell is 2p.

   

II. n = 3, ℓ = 2, mℓ = 2

  • This combination of three quantum numbers is permissible, since n is a positive integer, ℓ is less than n, and mℓ is in the interval +ℓ  to - ℓ.

  • The combination n = 3 and ℓ = 2 means the subshell is 3d.

III. n = 2, ℓ = 1, mℓ = –1

  • This combination of three quantum numbers is permissible, since n is a positive integer, ℓ is less than n, and mℓ is in the interval +ℓ  to - ℓ.

  • The combination n = 2 and ℓ = 1 means the subshell is 2p.

IV. n = 3, ℓ = 3, mℓ = 0

  • This set of three quantum numbers is not permissible, since ℓ = 3 is not less than n = 3.

V. n = 4, ℓ = 3, mℓ = –3

  • This set of three quantum numbers is permissible, since n is a positive integer, ℓ is less than n, and mℓ is in the interval +ℓ  to - ℓ.

  • The combination n = 4 and ℓ = 3 means the subshell is 4f.

Question 2.)What is the difference between the 2pz and the 3pz orbitals? Which quantum numbers in the orbital designation are different? Which will be the same? What does this indicate about the orbitals?

Answer:

The difference between    2p_z    and    3p_z    (note that the letter z is a subscript) is in the first quantum number.

The first quantum number indicates the main energy level and so it is related with the size of the orbital.

So, the 3pz orbital is bigger than the 2pz orbital.

The second quantum number is related to the letter p, so the same letter indicates the same shape of the orbital. Remember the table for the letters used to indicate the subshells are:

  s:  ℓ  = 0

  p:  ℓ  = 1

  d:  ℓ  = 2

  f:  ℓ  = 3

So, the scond quantum number for the two orbitals is ℓ  = 1.

The subscript indicates the space orientation. So, since both orbitals have the same subscript, z, they have the same orientation.

In conclusion, the only difference between those orbitals is the size of the orbitals, but they have the same shape and orientation.

3.)What is the maximum number of electrons that can have n = 3 and ms = + ½ ?

Answer:

  • 9 electrons

Explanation:

Using the rules,  for n = 3

  • ℓ can be 0, 1, or 2;

  • mℓ can be 0 for ℓ = 0,  

  • mℓ can be -1, 0, or -1 for  for ℓ = 1, and

  • mℓ can be -2, -1, 0, +1, or +2 for ℓ = 2,

You can get the possible sets of quantum numbers (with n = 3):

  • (3, 0, 0, +1/2)
  • (3, 0, 0, -1/2)
  • (3, 1, 0, +1/2)
  • (3, 1, 0, -1/2)
  • (3, 1, 1, +1/2)
  • (3, 1, 1, -1/2)
  • (3, 1, -1, +1/2)
  • (3, 1, -1, -1/2)
  • (3, 2, 0, +1/2)
  • (3, 2, 0, -1/2)
  • (3, 2, -2, +1/2)
  • (3, 2, -2, -1/2)
  • (3, 2, -1, +1/2)
  • (3, 2, -1, -1/2)
  • (3, 2, 1, +1/2)
  • (3, 2, 1, -1/2)
  • (3, 2, 2, +1/2)
  • (3, 2, 2, -1/2)

So, those are a total of 18 electrons from which half have n = 3 and ms = +1/2.

Hence, 9 electrons can have n = 3 and ms = +1/2.

You might be interested in
A scientist eliminated all living organisms in a jar of soup by heating it. He then left the soup jar uncovered for some days. A
velikii [3]
Spores in the air or contamination through some sort of insect interaction. In an open system, there are billions of microbial agents floating around. With an open container containing a food source and time, the likelihood of contamination is nearly %100.
6 0
3 years ago
Read 2 more answers
What is observed when an iron bar is
bija089 [108]
Answer:
b). of copper (II) sulfate

I hope this helped :)
5 0
3 years ago
When the glucose solution described in part A is connected to an unknown solution via a semipermeable membrane, the unknown solu
nikklg [1K]

Answer:

The correct answer to the question is

The unknown solution had a higher concentration of solutes

Explanation:

The process of the movement of the molecules of the solvent across the semipermeable membrane is known as osmosis

Osmosis is the passive transport of a solvent such as water through a selectively permeable  membrane in a direction from a region of low solute concentration to a higher concentration region so as to equalize the concentration of the solute on both sides of the membrane

3 0
4 years ago
Which of the following reactions would NOT have a ""proton transfer step"" in the reaction mechanism: A 2-bromo-2-methylbutane +
TiliK225 [7]

<u>Answer: </u>

Reaction C

<u>Explanation: </u>

For reaction A) we have the production of alcohol by the action of the water that attacks the tertiary carbocation produced by the leaving of Br. In the last step we will have the proton transfer (figure 1).

For B) the proton transfer step is given in the double bond formation due to the attack of the hydroxle group (figure 2).

In C we have an Sn2 reaction. Therefore, the reaction takes place in only one step without the opportunity of a proton transfer step (figure 3).

Finally for D we have an elimination reaction in which the tert-butoxide molecule will remove hydrogen (proton transfer step) from the carbocation to produce an alkene (figure 4).

6 0
3 years ago
What does <br> the atomic mass tell you?
saveliy_v [14]

Answer:

how many protons and neutrons in its atoms

Explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • An astronomer has proposed a new theory about the evolution of the universe. What is the next step that the astronomer should ta
    13·2 answers
  • What is the balanced chemical equation for the reaction used to calculate ΔH∘f of SrCO3(s)? If fractional coefficients are requi
    10·1 answer
  • The rate law for a hypothetical reaction is rate = k [A][B]. If the concentrations of A and B are both 0.020 moles per liter and
    11·1 answer
  • PLEASE HELP
    12·1 answer
  • Which an element that exist into two form​
    12·1 answer
  • How is an electrolytic cell different from a galvanic cell?
    15·1 answer
  • Semester Exams,Which Statement Best compares the two passages. Screenshot below,Giving Brainliest....
    12·2 answers
  • HELP!!!
    14·1 answer
  • How are mutations different? Provide examples.
    5·2 answers
  • A + B = AB
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!