1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetlana [45]
3 years ago
5

Need help with chemistry question

Chemistry
1 answer:
horrorfan [7]3 years ago
5 0

This is a multiple question and here are all the answers.

Qestion 1.) Which is not a permissible set of quantum numbers? Identify the subshell (if the quantum numbers identify a possible state).

I. n = 2, ℓ = 0, mℓ = 0

II. n = 3, ℓ = 2, mℓ = 2

III. n = 2, ℓ = 1, mℓ = –1

IV. n = 3, ℓ = 3, mℓ = 0

V. n = 4, ℓ = 3, mℓ = –3

Answer:

  • The combination that is not permissible is IV. n = 3, ℓ = 3, mℓ = 0.

  • Se below to identify the subshells.

Explanation:

The electrons are identified by a set of four quantum numbers.

The first quantum number, n, is the principal quantum number and it tells the shell. The second quantum number,ℓ , is the azymuthal quantum number and it tells the subshell.

The letters used to indicate the subshells are:

  s:  ℓ  = 0

  p:  ℓ  = 1

  d:  ℓ  = 2

  f:  ℓ  = 3

The third and fourth quantum numbers are mℓ (magnetic quantum number) and s (spin).

The rules that apply to predict which quantum numbers are possible are:

  • n: 1, 2, 3, 4, 5, 6, 7 (an integer greater than 0)

  • ℓ: 0, 1, 2, 3, ..., n-1 (an integer less than n)

  • mℓ: an integer from - ℓ to + ℓ

  • s: - 1/2 or +1/2

Two electrons in an atom cannot have the same set of 4 quantum numbers.

With that:

I. n = 2, ℓ = 0, mℓ = 0

  • This combination of three quantum numbers is permissible, since n is a positive integer, ℓ is less than n, and mℓ is in the interval +ℓ  to - ℓ.

  • The combination n = 2 and ℓ = 0 means the subshell is 2p.

   

II. n = 3, ℓ = 2, mℓ = 2

  • This combination of three quantum numbers is permissible, since n is a positive integer, ℓ is less than n, and mℓ is in the interval +ℓ  to - ℓ.

  • The combination n = 3 and ℓ = 2 means the subshell is 3d.

III. n = 2, ℓ = 1, mℓ = –1

  • This combination of three quantum numbers is permissible, since n is a positive integer, ℓ is less than n, and mℓ is in the interval +ℓ  to - ℓ.

  • The combination n = 2 and ℓ = 1 means the subshell is 2p.

IV. n = 3, ℓ = 3, mℓ = 0

  • This set of three quantum numbers is not permissible, since ℓ = 3 is not less than n = 3.

V. n = 4, ℓ = 3, mℓ = –3

  • This set of three quantum numbers is permissible, since n is a positive integer, ℓ is less than n, and mℓ is in the interval +ℓ  to - ℓ.

  • The combination n = 4 and ℓ = 3 means the subshell is 4f.

Question 2.)What is the difference between the 2pz and the 3pz orbitals? Which quantum numbers in the orbital designation are different? Which will be the same? What does this indicate about the orbitals?

Answer:

The difference between    2p_z    and    3p_z    (note that the letter z is a subscript) is in the first quantum number.

The first quantum number indicates the main energy level and so it is related with the size of the orbital.

So, the 3pz orbital is bigger than the 2pz orbital.

The second quantum number is related to the letter p, so the same letter indicates the same shape of the orbital. Remember the table for the letters used to indicate the subshells are:

  s:  ℓ  = 0

  p:  ℓ  = 1

  d:  ℓ  = 2

  f:  ℓ  = 3

So, the scond quantum number for the two orbitals is ℓ  = 1.

The subscript indicates the space orientation. So, since both orbitals have the same subscript, z, they have the same orientation.

In conclusion, the only difference between those orbitals is the size of the orbitals, but they have the same shape and orientation.

3.)What is the maximum number of electrons that can have n = 3 and ms = + ½ ?

Answer:

  • 9 electrons

Explanation:

Using the rules,  for n = 3

  • ℓ can be 0, 1, or 2;

  • mℓ can be 0 for ℓ = 0,  

  • mℓ can be -1, 0, or -1 for  for ℓ = 1, and

  • mℓ can be -2, -1, 0, +1, or +2 for ℓ = 2,

You can get the possible sets of quantum numbers (with n = 3):

  • (3, 0, 0, +1/2)
  • (3, 0, 0, -1/2)
  • (3, 1, 0, +1/2)
  • (3, 1, 0, -1/2)
  • (3, 1, 1, +1/2)
  • (3, 1, 1, -1/2)
  • (3, 1, -1, +1/2)
  • (3, 1, -1, -1/2)
  • (3, 2, 0, +1/2)
  • (3, 2, 0, -1/2)
  • (3, 2, -2, +1/2)
  • (3, 2, -2, -1/2)
  • (3, 2, -1, +1/2)
  • (3, 2, -1, -1/2)
  • (3, 2, 1, +1/2)
  • (3, 2, 1, -1/2)
  • (3, 2, 2, +1/2)
  • (3, 2, 2, -1/2)

So, those are a total of 18 electrons from which half have n = 3 and ms = +1/2.

Hence, 9 electrons can have n = 3 and ms = +1/2.

You might be interested in
Can somebody please help with this question?
Leni [432]
Most of the mass of an atom is located in the (nucleus), and most of the volume is taken up by the (electron clouds).

The ones in the parenthesis are your answers.

Hope this helps!
7 0
3 years ago
how many milliliters of 1.50 m hno3 contain enough nitric acid to dissolve an old copper penny with a mass of 3.94 g?
Lerok [7]
Molar mass HNO₃ = 63.0 g/mol

number of moles = 3.94 / 63.0 => 0.0625 moles

Volume = moles / molarity

V = 0.0625 / 1.50

V = 0.04166 L x 1000 = 41.66 mL

hope this helps!

5 0
3 years ago
The density of gas particles in a section of Earth’s atmosphere decreases. Which of the following is the most likely explanation
Bad White [126]
<span>This is due to the fact that the air pressure in that certain section of Earth’s atmosphere decreased. As density of gas particles decreases as air pressure decreases. Therefore, density of gas particles and air pressure have a direct relationship. An increase in air pressure would then effect to an increase in gas particles. </span>
6 0
3 years ago
The percentage of keys you type correctly is A. accuracy B. correctness C. exactness D. precision WHO EVER GETS THIS EARNS BRAIN
e-lub [12.9K]
The answer is A: accuracy
5 0
2 years ago
What is the approximate percent by mass of potassium in KHCO3?
lozanna [386]

Answer:

The mass percent of potassium is 39%

Option C is correct

Explanation:

Step 1: Data given

Atomic mass of K = 39.10 g/mol

Atomic mass of H = 1.01 g/mol

Atomic mass of C = 12.01 g/mol

Atomic mass of O = 16.0 g/mol

Step 2: Calculate molar mass of KHCO3

Molar mass KHCO3 = 39.10 + 12.01 + 1.01 + 3*16.0

Molar mass KHCO3 = 100.12 g/mol

Step 3: Calculate mass percent of potassium (K)

%K = (atomic mass of K / molar mass of KHCO3) * 100%

%K = (39.10 / 100.12) * 100%

%K = 39.05 %

The mass percent of potassium is 39%

Option C is correct

8 0
3 years ago
Other questions:
  • How much solution could be heated to boiling by the heat evolved by the dissolution of 24.0 g of naoh? (for the solution, assume
    12·1 answer
  • You need to make an aqueous solution of 0.215 M aluminum bromide for an experiment in lab, using a 300 mL volumetric flask. How
    12·1 answer
  • Which of the following isotopes has the same number of neutrons as phosphorus – 21 (atomic number 15)
    10·1 answer
  • What always happens during a chemical change?
    9·1 answer
  • A 1.0l buffer solution contains 0.100 mol of hc2h3o2 and 0.100 mol of nac2h3o2. the value of ka for hc2h3o2 is 1.8×10−5. part a
    14·1 answer
  • How do organisms interact with each other and how can one organism be dependent upon other species
    12·2 answers
  • The work done to compress a gas is 83.0 J. As a result, 27.0 J of heat is given off to the surroundings. Calculate the change in
    12·1 answer
  • Some antacid tables contain aluminum hydroxide. The aluminum hydroxide reacts with stomach acid according to the equation: Al(OH
    11·1 answer
  • CAN SOMEONE HELP ME HERE PLEASE I ONLY NEED THESE LEFT AND IM CONFUSED-
    15·1 answer
  • Please help asap chemistry homework
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!