a) See free-body diagram in attachment
b) The acceleration is 
Explanation:
a)
The free-body diagram of an object is a diagram representing all the forces acting on the object. Each force is represented by a vector of length proportional to the magnitude of the force, pointing in the same direction as the force.
The free-body diagram for this object is shown in the figure in attachment.
There are three forces acting on the object:
- The weight of the object, labelled as
(where m is the mass of the object and g is the acceleration of gravity), acting downward - The applied force,
, acting up along the plane - The force of friction,
, acting down along the plane
b)
In order to find the acceleration of the object, we need to write the equation of the forces acting along the direction parallel to the incline. We have:

where:
is the applied force, pushing forward
is the frictional force, acting backward
is the component of the weight parallel to the incline, acting backward, where
m = 2 kg is the mass of the object
is the acceleration of gravity
is the angle between the horizontal and the incline (it is not given in the problem, so I assumed this value)
a is the acceleration
Solving for a, we find:

Learn more about inclined planes:
brainly.com/question/5884009
#LearnwithBrainly
The heat is used to break the bonds between the ice molecules as they turn into a liquid phase. Since the average kinetic energy of the molecules does not change at the moment of melting, the temperature of the molecules does not change.
To solve this problem it is necessary to apply the concepts given by Malus regarding the Intensity of light.
From the law of Malus intensity can be defined as

Where
Angle From vertical of the axis of the polarizing filter
Intensity of the unpolarized light
The expression for the intensity of the light after passing through the first filter is given by

Replacing we have that


Re-arrange the equation,

Re-arrange to find \theta





The value of the angle from vertical of the axis of the second polarizing filter is equal to 30.2°
Answer: a boy jumping down
Answer:
0.3659
Explanation:
The power (p) is given as:
P = AeσT⁴
where,
A =Area
e = transmittivity
σ = Stefan-boltzmann constant
T = Temperature
since both the bulbs radiate same power
P₁ = P₂
Where, 1 denotes the bulb 1
2 denotes the bulb 2
thus,
A₁e₁σT₁⁴ = A₂e₂σT₂⁴
Now e₁=e₂
⇒A₁T₁⁴ = A₂T₂⁴
or

substituting the values in the above question we get

or
=0.3659