It will rise, and then fall back to the Earth’s surface.
If the length and linear density are constant, the frequency is directly proportional to the square root of the tension.
In a nuclear power plant, energy is released from the nuclei of atoms. The correct option among all the options given in the question is the first option. Huge amount of thermal energy is released by the breaking of the uranium atoms. This energy is used for turning a turbine that produces electricity. It is a very clean method of producing electricity.
The weight of the cooler is (mg). That's (26)(9.8) = 254.8 Newtons.
Its gravitational potential energy while it's up in the top row is (mgh). That's (254.8)(17.5) = 4,459 Joules.
That's how much work it took to get the cooler up to the top row, and that's the energy it gives up when it moves back down to the bench.
In order to bring it down . . .
-- Gravity does 4,459 joules of work on the cooler.
-- The team assistant does NEGATIVE 4,459 joules of work on it.