The law of conservation of mass states that in a chemical reaction, the total mass of reactants is equal to the total mass of products. ... Because atoms are only rearranged in a chemical reaction, there must be the same number of sodium atoms and chlorine atoms in both the reactants and products.
Answer:
c) determine the limiting reactant lol I learned this not too long ago
Answer:
3
Explanation:
Collect like terms and divide by the coefficient of k
0.6 mol / L is the molarity of a solution prepared by dissolving 36. 0 g of NaOH in enough water to make 1. 50 l of solution.
The amount of a substance in a specific volume of solution is known as its molarity (M). The number of moles of a solute per liter of a solution is known as molarity. The molar concentration of a solution is another term for molarity.
The ratio employed to indicate the solution's concentration is called its molarity. Understanding a solution's molarity is important since it allows you to determine the actual concentration as well as whether the solution is diluted or concentrated.
Amount of NaOH = 36. 0 g
Amount of water = 1. 50 L
1 mol of NaOH = 40 g,
Moles of NaOH = 36. 0 / 40 g = 0.9 mol NaOH
Molarity of a solution = moles of solute / Liters of solution
Molarity of a solution = 0.9 / 1.50
Molarity of a solution = 0.6 mol / L
To know more about Molarity refer to: brainly.com/question/8732513
#SPJ4
Answer: The answer is 6.78 grams.
Explanation: The equation used for solving this type of problems is:

where,
is the initial amount of radioactive substance, N is the remaining amount and n is the number of half lives.
Number of half lives is calculated on dividing the given time by the half life.
n = time/half life
Time is given as 48.0 hours and the half life is given as 4.536 days. let's make the units same and for this let's convert the half life from days to hours.

= 108.864 hours
So,
= 0.441
Since 5.00 g is the required amount when the radioactive substance is delivered to the scientist, it would be the final amount that is N. We need to calculate the initial amount. Let's plug in the values in the equation:



= 6.78 g
So, 6.78 g of the radioactive substance needs to be ordered.