Answer:
Non-zero digits are always significant.
Any zeros between two significant digits are significant.
A final zero or trailing zeros in the decimal portion ONLY are significant. If a number ends in zeros to the right of the decimal point, those zeros are significant.
Explanation:
1.138 has 4 significant figures, which are 1, 1, 3 and 8. The numbers after the decimal point are decimals and are significant figures.
Stir the water continuously, this is the only logical answer. Adding powdered sugar, decreasing the volume, increasing the amount of suga, cooling, all don't make the sugar dissolve quicker.
Additional information
Relative atomic mass(Ar) : A=7, G=16
The empirical formula : A₂G
<h3>Further explanation</h3>
Given
3.5g of element A
4.0g of element G
Required
the empirical formula for this compound
Solution
The empirical formula is the smallest comparison of atoms of compound forming elements.
The empirical formula also shows the simplest mole ratio of the constituent elements of the compound
mol of element A :

mol of element G :

mol ratio A : G = 0.5 : 0.25 = 2 : 1
Answer:
c. By itself, heme is not a good oxygen carrier. It must be part of a larger protein to prevent oxidation of the iron.
e. Both hemoglobin and myoglobin contain a prosthetic group called heme, which contains a central iron ( Fe ) (Fe) atom.
f. Hemoglobin is a heterotetramer, whereas myoglobin is a monomer. The heme prosthetic group is entirely buried within myoglobin.
Explanation:
The differences between hemoglobin and myoglobin are most important at the level of quaternary structure. Hemoglobin is a tetramer composed of two each of two types of closely related subunits, alpha and beta. Myoglobin is a monomer (so it doesn't have a quaternary structure at all). Myoglobin binds oxygen more tightly than does hemoglobin. This difference in binding energy reflects the movement of oxygen from the bloodstream to the cells, from hemoglobin to myoglobin.
Myoglobin binds oxygen
The binding of O 2 to myoglobin is a simple equilibrium reaction:
A COVALENT BOND, FORMS BETWEEN ELEMENTS WITH SIMILAR ELECTRONEGATIVITY AS SHARING OF ELECTRON PAIRS BETWEEN ATOMS IS EASIER AS THEY ARE IDENTICAL.
Explanation:
Bonding atoms with similar electronegativity values form covalent bonds.
A covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms.
Covalent bonds form between two nonmetal atoms with identical or relatively close electronegativity values
Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons, also it is the strength an atom has to attract a bonding pair of electrons to itself.
Pure covalent bonds result when two atoms of the same electronegativity bond. This occurs only when two atoms of the same element bond with each other.