The mass of nitric acid required to make the given solution is 0.0627 g.
The given parameters:
- <em>Volume of the acid, V = 250 mL</em>
- <em>pH of the acid, = 2.4</em>
The hydrogen ion (H⁺) concentration of the nitric acid is calculated as follows;

The molarity of the nitric acid is calculated as follows;

The number of moles of the nitric acid is calculated as follows;

The molar mass of nitric acid is calculated as;

The mass of the nitric acid contained in the calculated number of moles is calculated as;

Thus, the mass of nitric acid required to make the given solution is 0.0627 g.
Learn more about molarity of acids here: brainly.com/question/13864682
The coefficients of H2S and HNO3 in the balanced reaction equation are 2 and 3 respectively.
<h3>Chemical reaction</h3>
In a chemical reaction, reactans interact in a unique way to form products. In this case, the unbalanced reaction equation is; H2S + HNO3-----> NO + H2O.
Since this reaction is redox and electrons are lost/gained in the process, the coefficients of H2S and HNO3 in the balanced reaction equation are 2 and 3 respectively.
Learn more about chemical reactions: brainly.com/question/22817140
#SPJ4
Answer:
T2 =21.52°C
Explanation:
Given data:
Specific heat capacity of sample = 1.1 J/g.°C
Mass of sample = 385 g
Initial temperature = 19.5°C
Heat absorbed = 885 J
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = Final temperature - initial temperature
885J = 385 g× 1.1 J/g.°C×(T2 - 19.5°C )
885 J = 423.5 J/°C× (T2 - 19.5°C )
885 J / 423.5 J/°C = (T2 - 19.5°C )
2.02°C = (T2 - 19.5°C )
T2 = 2.02°C + 19.5°C
T2 =21.52°C
I would say C is the most correct.
In D it depends on what water source you're using. Let's say it is a waterfall, then the source of the water (melting ice or a lake) may disappear in the future.
If you're using underwater "windmills" placed in the ocean, then you would expect it to last a while as the ocean will not disappear in the near future.
Answer:
-
Explanation:
Water molecules pull the sodium and chloride ions apart, breaking the ionic bond that held them together. After the salt compounds are pulled apart, the sodium and chloride atoms are surrounded by water molecules, as this diagram shows. Once this happens, the salt is dissolved, resulting in a homogeneous solution.