1,3 and 5 are the answers
The force needed to stretch the steel wire by 1% is 25,140 N.
The given parameters include;
- diameter of the steel, d = 4 mm
- the radius of the wire, r = 2mm = 0.002 m
- original length of the wire, L₁
- final length of the wire, L₂ = 1.01 x L₁ (increase of 1% = 101%)
- extension of the wire e = L₂ - L₁ = 1.01L₁ - L₁ = 0.01L₁
- the Youngs modulus of steel, E = 200 Gpa
The area of the steel wire is calculated as follows;

The force needed to stretch the wire is calculated from Youngs modulus of elasticity given as;


Thus, the force needed to stretch the steel wire by 1% is 25,140 N.
Learn more here: brainly.com/question/21413915
Answer:
Moment of the force is 20 N-m.
Explanation:
Given:
Force exerted by the person is, 
Distance of application of force from the point about which moment is needed is, 
Now, we know that, moment of a force 'F' about a point at a perpendicular distance of 'd' from the same point is given as the product of the force and the perpendicular distance.
Therefore, the moment of the force about the end of the claw hammer is given as:

Hence, the moment of the force exerted by the person about the end of the claw hammer is 20 N-m.
Answer:
Final speed of the car, v = 24.49 m/s
Explanation:
It is given that,
Initial velocity of the car, u = 0
Acceleration, 
Time taken, t = 7.9 s
We need to find the final velocity of the car. Let it is given by v. It can be calculated using first equation of motion as :

v = 24.49 m/s
So, the final speed of the car is 24.49 m/s. Hence, this is the required solution.
Answer:
im sorry im just trying this app please dont report
Explanation:
please im begging you maam/sir