Answer:
The answer to your question is
a) t = 2.55 s
b) t = 5.5 s
Explanation:
Data
vo = 25 m/s
h = 2 m
g = 9.81 m/s
Formula
t = -(vo)/g
a)
t = -(25)/9.81
t = 2.55 s
b)
Tt = 2t
Tt = 2(2.55)
Tt = 5.1 s
Time in the last 10 m
10 = 25t + (1/2)(9.81)t²
Simplify
10 = 25t 4.91t²
4.9t² + 25t - 10 = 0
Solve the equation using an online calculator
t₁ = 0.37 s t₂ = -5.47 s
The correct answer is t₁, t₂ is incorrect because there are no negative answers.
Total time = 5.1 + 0.37
= 5.5 s
Answer:
a=g(sinθ-μkcosθ)
Explanation:
In an inclined plane the forces that interact with the object can be seen in the figure. The normal force, the weight w and the decomposition of the force vector of weight can be observed.
wx=m*g*sinθ
wy=m*g*cosθ
As the objects moves down an incline, acceleration in y axis is 0.
Then, by second Newton's Law:
Fy = m*ay
FN - m*g cos θ = 0,
FN=m*g cos θ
In x axis the forces that interacs are the x component of weight and friction force:
Fx = m*ax
mg sen u-FN*μk=m*a
Being friction force, Fr=FN*μk, we replace with its value in below formula:
m*g *sinθ-(m*g*cosθ*μk)=m*a
Then, isolating a:
a=(m*g sinθ-(m*g*cosθ*μk))/m
Solving, we have next equation:
a=g sinθ-(g*cosθ*μk)
Applying distributive property we have:
a=g*(sinθ-μk*cosθ)
Answer:
D.
R increases
V is constant
I decreases
Explanation:
The resistance of a wire is given by the following formula:

It is clear from this formula that resistance is directly proportional to the length of wire. So, when length of wire is increased, <u>the resistance of circuit increases</u>.
The <u>voltage in the circuit will be constant</u> as the voltage source remains same and it is not changed.
Now, we can use Ohm Law:
V = IR
at constant V:
I ∝ 1/R
it means that current is inversely proportional to resistance. Hence, the increase of resistance causes <u>the current in circuit to decrease.</u>
Therefore, the correct option will be:
<u>D.</u>
<u>R increases
</u>
<u>V is constant
</u>
<u>I decreases</u>
Answer:
6.2N force
Explanation:
According to Newton's second law of motion, force is equal to the product of the mass of a body and its acceleration. Mathematically,
Force = mass × acceleration
Given mass of bucket of water = 6.2kg
acceleration of the bucket = 1m/s²
Force exerted on the rope = 6.2 × 1
= 6.2N
Answer:
W = 0
Explanation:
We are given with, a construction worker is carrying a load of 40 kg over his head and is walking at a constant velocity. He travels a distance of 50 m.
The work done by an object is given by :

F = ma
So,

m is mass
a is acceleration
d is displacement
The worker is moving with constant velocity, its acceleration will be 0. So, the work done by the worker is 0.