The momentum of an object is equivalent to the product of the object's mass and velocity. Computing the momentum for each ball:
A- 15 * 0.7 = 10.5
B- 5.5 * 1.2 = 6.6
C- 5.0 * 2.5 = 12.5
D- 1.5 * 5.0 = 7.5
Therefore, ball C has the greatest momentum.
Answer:
Its duration is 1.85*10⁻³ s or 1.85 ms
Explanation:
The intensity of electric current I is defined as the amount of electric charge Q (measured in Coulombs) that passes through a section of a conductor in each unit of time. The letter I is used to name the Intensity and its unit is the Ampere (A).
The intensity of electric current is expressed as:

where:
I: Intensity expressed in Amps (A)
Q: Electric charge expressed in Coulombs (C)
t: Time expressed in seconds (s)
Being:
Replacing:

Solving:
19500 A*t= 36 C

t= 1.85*10⁻³ s= 1.85 ms (being 1 s= 1,000 ms)
<u><em>Its duration is 1.85*10⁻³ s or 1.85 ms</em></u>
From the momentum conservation we know that the initial momentum is equal to the final momentum. The momentum in a singular way can be defined as the product between the mass and the velocity of an object. In the presented system, however, there are two objects, therefore the mass of both and the speed of both, before and after the collision must be taken into account. Mathematically we could describe this as

Here,
= Mass of each object
= Initial velocity of each object
= Final velocity of each object
From here we can realize that it is necessary to use the system on both cars to be able to predict what will happen either with their masses, or their speeds.
The correct answer is C.
Many ecosystems and plants are damaged or destroyed when a volcano erupts.