Answer:
As you said you already know, energy cannot be created or destroyed.
Explanation:
You cannot gain energy or lose energy, it can only be converted. So if you start on a 3m high hill and go down it, your potential energy is equal to mgh, and if you get to the bottom of the hill, your KE would be equal to your PE at the top, and when you start going up another hill again, the maximum height you can reach is 3m, because energy cannot be created or destroyed, and your mass and gravitational acceleration are the same, so therefore you can only reach the same height you started from due to the conservation of energy.
Answer:
the two vehicles will be moving at a speed of 6.16 m/s
Explanation:
This is a case of completely inelastic collision, therefore, the conservation of momentum can be written as:

which given the information provided results into:

Answer:
Angle θ = 30.82°
Explanation:
From Malus’s law, since the intensity of a wave is proportional to its amplitude squared, the intensity I of the transmitted wave is related to the incident wave by; I = I_o cos²θ
where;
I_o is the intensity of the polarized wave before passing through the filter.
In this question,
I is 0.708 W/m²
While I_o is 0.960 W/m²
Thus, plugging in these values into the equation, we have;
0.708 W/m² = 0.960 W/m² •cos²θ
Thus, cos²θ = 0.708 W/m²/0.960 W/m²
cos²θ = 0.7375
Cos θ = √0.7375
Cos θ = 0.8588
θ = Cos^(-1)0.8588
θ = 30.82°
Answer:
what is the answers? i cant help you without the answers
Explanation:
Answer:
that best describes the process is C
Explanation:
This problem is a calorimeter process where the heat given off by one body is equal to the heat absorbed by the other.
Heat absorbed by the smallest container
Q_c = m ce (
-T₀)
Heat released by the largest container is
Q_a = M ce (T_{i}-T_{f})
how
Q_c = Q_a
m (T_{f}-T₀) = M (T_{i} - T_{f})
Therefore, we see that the smaller container has less thermal energy and when placed in contact with the larger one, it absorbs part of the heat from it until the thermal energy of the two containers is the same.
Of the final statements, the one that best describes the process is C
since it talks about the thermal energy and the heat that is transferred in the process