Hey user
The energy E in joules (J) is equal to the voltage V in volts (V), times the electrical charge Q in coulombs (C):
E(J) = V(V) ×<span> Q</span>(C)
So
joule = volt × coulomb
or
J = V × C
Example
What is the energy in joules that is consumed in an electrical circuit with voltage supply of 15V and charge flow of 4 coulombs?
E = 15V × 4C = 60J
a. The disk starts at rest, so its angular displacement at time
is

It rotates 44.5 rad in this time, so we have

b. Since acceleration is constant, the average angular velocity is

where
is the angular velocity achieved after 6.00 s. The velocity of the disk at time
is

so we have

making the average velocity

Another way to find the average velocity is to compute it directly via

c. We already found this using the first method in part (b),

d. We already know

so this is just a matter of plugging in
. We get

Or to make things slightly more interesting, we could have taken the end of the first 6.00 s interval to be the start of the next 6.00 s interval, so that

Then for
we would get the same
.
Answer:
c) may also be conserved
Explanation:
Momentum is conserved in both elastic and inelastic type of collisions.
But the differences is that:
In an ELASTIC type of collisions, KINETIC ENERGY IS ALSO CONSERVED.
whereas, In an INELASTIC type of collision, KINETIC ENERGY IS NOT CONSERVED.
So unless until type of collision is specified, we can not say anything about the conservation of kinetic energy after collision.
Hence, may also be conserved is the appropriate option here.
Mechanical Energy transforms into Thermal due to the moving parts rubbing on eachother creating heat and friction.
Answer: position (x) and time (t)
Explanation:
A body is said to be in motion when its position changes with time with respect to a stationary observer.
Following are the types of motion:
<u>Uniform motion</u>: When equal amount of distance is covered in equal intervals of time.
<u>Non-Uniform motion</u>: When unequal amount of distance is covered in equal intervals of time.
Motion can be of the following types as well:
<u>Rectilinear motion</u>: when object moves in a straight line.
<u>Circular motion</u>: when object moves in a curved path.
<u>Periodic motion</u>: when motion repeats itself in fixed intervals of time.
Thus, in order to define motion, only two variables are required: position and time. Measuring these variables can determine whether the object is in motion or not and the type of motion.