Answer:
The objects were 1.8m apart.
Explanation:
We will start stating the Coulomb's Law. It says that:

Where F_e is the electric force between the objects, q_1 and q_2 are the magnitude of the charge of the objects, r is the distance between them and K is the Coulomb's constant (
in vacuum). Solving for the distance r we have:

Plugging the given values into this equation, we obtain:

In words, the two charged objects were 1.8m apart.
<u>A</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u><u>:</u><u>-</u><em> </em><em>F</em><em>a</em><em>l</em><em>s</em><em>e</em>
<u>E</u><u>x</u><u>p</u><u>l</u><u>a</u><u>n</u><u>a</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u>
<em>False because it can leads to overloading and further to short circut.</em>
<h2>
<em><u>H</u></em><em><u>o</u></em><em><u>p</u></em><em><u>e</u></em><em><u> </u></em><em><u>I</u></em><em><u>t</u></em><em><u> </u></em><em><u>W</u></em><em><u>i</u></em><em><u>l</u></em><em><u>l</u></em><em><u> </u></em><em><u>H</u></em><em><u>e</u></em><em><u>l</u></em><em><u>p</u></em><em><u> </u></em><em><u>Y</u></em><em><u>o</u></em><em><u>u</u></em><em><u>!</u></em></h2>
It could never actually happen like this, but the question is
looking for you to 'conserve' the momentum.
Momentum of a moving object is (mass) x (velocity).
Like velocity, momentum has a direction.
Momentum is one of those things that's 'conserved'.
That means that momentum can't appear out of nowhere, and
it doesn't disappear. The total after the collision is the same as
the total was before the collision.
Momentum of the skinny player:
(70 kg) x (3 m/s north) = 210 kg-m/s north.
Momentum of the heavy player:
(80 kg) x (1.5 m/s south) = 120 kg-m/s south .
Total momentum before the collision is
(210 kg-m/s north) + (120 kg-m/s south)
= 90 kg-m/s north .
It has to be the same after the collision.
(mass) x (velocity) = 90 kg-m/s north.
The mass after the collision is 150 kg, because they get
tangled up and stuck together, and they move together.
(150 kg) x (velocity) = 90 kg-m/s north .
Divide each side
by 150 kg : velocity = (90 kg-m/s north) / (150 kg)
= (90/150) (kg-m/s / kg north)
= 0.6 m/s north .
Answer:
The biggest reasons the U.S. hasn't adopted the metric system are simply time and money. When the Industrial Revolution began in the country, expensive manufacturing plants became a main source of American jobs and consumer products.
Explanation:
Answer:
2023857702.507m
Explanation:

recall from newton's law of gravitation
G=gravitational constant
mshew=50g
melephant=5*10^3kg
rearth=radius of the earth 6400km or 6400000m
mearth= masss of the earth
Gm(shrew)m(earth)/r(earth)^2 = Gm(elephant)m(earth)/r^2
strike out the left hand side and right hand side variables
m(shrew)/r(earth)^2 = m(elephant)/r^2
r^2 = m(elephant).r(earth)^2 / m(shrew) .........make r^2 the subject of the equation
r^2=
r^2=40960000000000
r=2023857702.507m