1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
belka [17]
4 years ago
10

Normally, jet engines push air out the back of the engine, resulting in forward thrust, but commercial aircraft often have thrus

t reversers that can change the direction of the ejected air, sending it forward. How does this affect the direction of thrust? When might these thrust reversers be useful in practice?
Physics
1 answer:
ANEK [815]4 years ago
6 0

Answer:

When the ejected air is moving in the downward direction then the thrust force acts in the upward direction, due to reversal thrust, the jets can take off vertically without needing a runway this way.

Explanation:

Newton’s third law motion states that for every action there will be an equal and opposite reaction.

Thrust reversal is also known as reverse thrust. It acts opposite to the motion of the aircraft by providing the deceleration.

Commercial aircraft moves the ejected air in the forward direction means that the thrust will acts opposite to the motion of the aircraft that is backward direction due to thrust reversal. This thrust force might be used to decelerate the craft.

Uses of thrust reversal in practice:

When the ejected air is moving forward direction then the thrust force moving backward direction due to reversal thrust the speed of the craft slows down.

When the ejected air is moving in the downward direction then the thrust force acts in the upward direction, due to reversal thrust, the jets can take off vertically without needing a runway this way.

You might be interested in
Is the force of gravity stronger on a piece of crumpled paper or a normal piece of flat paper?
GaryK [48]
Yes, because a crumpled piece of paper has more center mass, allowing it to fall faster.
3 0
4 years ago
A 20.0 μf capacitor is charged to a potential difference of 850 v. the terminals of the charged capacitor are then connected to
liberstina [14]
  • (a) Q = 1.70\times 10^{-2}\;\text{C};
  • (b) V_\text{final} = 5.31\times 10^{2}\;\text{V};
  • (c) E_\text{final} = 4.52\;\text{J};
  • (d) \Delta E = 2.82\;\text{J}.

All four values are in 3 sig. fig.

<h3>Explanation</h3>

(a)

Q = C\cdot V = 20.0\times 10^{-6} \times 850\;\text{V} = 1.70\times 10^{-2}\;\text{J}.

(b)

Sum of the final charge on the two capacitors should be the same as the sum of the initial charge. Voltage of the two capacitors should be the same. That is:

C_1\cdot V_\text{final} +C_2 \cdot V_\text{final} = C_1\cdot V_\text{initial};

(C_1+C_2)\cdot V_\text{final} = C_1\cdot V_\text{initial};

\displaystyle V_\text{final} = \frac{C_1}{C_1+C_2}\cdot V_\text{initial}\\\phantom{V_\text{final}} = \frac{20.0\;\mu\text{F}}{20.0\;\mu\text{F} + 12.0\;\mu\text{F}} \times 850\;\text{V}\\\phantom{V_\text{final}} =531\;\text{V}.

(c)

\displaystyle E = \frac{1}{2}\cdot C\cdot V^{2}.

\displaystyle E_\text{final} = \frac{1}{2} (C_1 + C_2) \cdot {V_\text{final}}^{2} \\\phantom{E_\text{final}} = \frac{1}{2} \times (20.0\times 10^{-6} + 12.0\times 10^{-6}) \times 531.25\\\phantom{E_\text{final}} = 4.52\;\text{J}.

(d)

Initial energy of the system, which is the same as the initial energy in the 20.0\;\mu\text{F} capacitor:

\displaystyle E_\text{initial} = \frac{1}{2} \times 20.0\times 10^{-6} \times 850^{2} = 7.225\;\text{J}.

Change in energy:

\Delta E = 7.225\;\text{J} - 4.516\;\text{J} = 2.70\;\text{J}.

4 0
4 years ago
A human hair is approximately 56 µm in diameter.
Ann [662]

Answer:

The diameter is 0.000056 m

Explanation:

Lets explain the relation between the meter and the micrometer

1 Meter is equal to 1000000 (one million) micrometers

1 micrometer = \frac{1}{1000000}=\frac{1}{10^{6}}=10^{-6}

The symbol of the meter is m

The symbol of micrometer is μm

A human hair is approximately 56 µm in diameter

We need to express this diameter in meter

To do that we divide this number by 1,000,000 or multiply it by 10^{-6}

→ \frac{56}{1000000}=0.000056  56 µm = 0.000056 m

→ OR

→ 56*10^{-6}=0.000056

→ 56 µm = 0.000056 m

<em>The diameter is 0.000056 m</em>

4 0
4 years ago
Suppose the ring rotates once every 4.30 ss . If a rider's mass is 58.0 kgkg , with how much force does the ring push on her at
Stells [14]

Answer:

422.36 N

Explanation:

given,

time of rotation = 4.30 s

T = 4.30 s

Assuming the diameter of the ring equal to 16 m

radius, R = 8 m

v = \dfrac{2\pi R}{T}

v = \dfrac{2\pi\times 8}{4.30}

  v = 11.69 m/s

now, Force does the ring push on her at the top

- N - m g = \dfrac{-mv^2}{R}

N + m g = \dfrac{mv^2}{R}

N = \dfrac{mv^2}{R}- m g

N = m(\dfrac{v^2}{R}- g)

N = 58\times (\dfrac{11.69^2}{8}- 9.8)

N = 422.36 N

The force exerted by the ring to push her is equal to 422.36 N.

6 0
3 years ago
A wave of wavelength 0.3 m travels 900 m in 3.0 s. Calculate its frequency.
Crank

Answer: 1000 Hz

Explanation:

You can calculate frequency by dividing velocity by wavelength

Frequency = velocity/wavelength

Find velocity first.

900 m/3 s = 300 m/s

Plug values in to find frequency.

F = (300 m/s)/0.3 m

F = 1000 Hz

8 0
3 years ago
Other questions:
  • How can friction help you in your daily life?
    15·2 answers
  • A 98-kg fullback is running along at 8.6 m / s when a 76-kg defensive back running in the same direction at 9.8 m / s jumps on h
    5·1 answer
  • Which most likely could cause acceleration? Check all that apply.
    7·1 answer
  • Reto: Aníbal desea construir una carpa de base hexagonal de 1,40 m de altura. El vértice de la base es de 0,80m y la longitud de
    6·1 answer
  • Apples are stored in a container (width = length = 3.5 ft) that is filled to a depth of 2.75 feet. If the unit density of an app
    10·1 answer
  • 6. What are the methods to control noise pollution?​
    13·2 answers
  • While teaching about transistors, Mr. Mendoza shows a video of a hand pump being used to draw water from a well. He points out h
    7·2 answers
  • What is the easiest way to add energy to matter? Heating it Cooling it Decreasing pressure Decreasing temperature
    8·2 answers
  • What is the kinetie energy of a 3-kilogram ball that is rolling at 2 meters per second?
    9·1 answer
  • A traffic-safety engineer is designing a deceleration lane. She is basing the length of
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!