Answer:
The velocity of the hay bale is - 0.5 ft/s and the acceleration is 
Solution:
As per the question:
Constant velocity of the horse in the horizontal, 
Distance of the horse on the horizontal axis, x = 10 ft
Vertical distance, y = 20 ft
Now,
Apply Pythagoras theorem to find the length:


Now,
(1)
Differentiating equation (1) w.r.t 't':


where
= Rate of change of displacement along the horizontal
= Rate of change of displacement along the vertical
= velocity along the x-axis.
= velocity along the y-axis



Acceleration of the hay bale is given by the kinematic equation:





When we shake a mango tree, the mangoes fall down. It is because when we shake the tree, the mango tend to be rest due to inertia where as the branches are in motion. That is why the mangoes tend to be at rest due to inertia where as the branches are in the motion.
Answer:
4.245s
Explanation:
Given that,
Hypothetical value of speed of light in a vacuum is 18 m/s
Speed of the car, 14 m/s
Time given is 6.76 s, and we're asked to find the observed time, T
The relationship between the two times can be given as
T = t / √[1 - (v²/c²)]
The missing variable were looking for is t, and we can find it if we rearrange the formula and make t the subject
t = T / √[1 - (v²/c²)]
And now, we substitute the values and insert into the equation
t = 6.76 * √[1 - (14²/18²)]
t = 6.76 * √[1 - (196/324)]
t = 6.76 * √(1 - 0.605)
t = 6.76 * √0.395
t = 6.76 * 0.628
t = 4.245 s
Therefore, the time the driver measures for the trip is 4.245s
Answer:
+ 3.0 m
Explanation:
displacement is shortest distance from fixed point O in particular direction . in diagram shortest distance at end from O is 3 m and it is right of O so +. HENCE +3.0m
The angle of reflection is equal to angle of incidence so the angle of reflection is also 32°.