29.213 cm3
First, calculate the mass of the water used. You do this by subtracting the original mass of the flask from the combined mass of the water and flask, giving:60.735 g - 31.601 g = 29.134 g
So we now know we have 29.134 g of water. To calculate the volume of the flask, simply divide by the density of the water, giving:29.134 g / (0.9973 g/cm3) = 29.213 cm3
To develop this problem it is necessary to apply the concepts related to a magnetic field in spheres.
By definition we know that the magnetic field in a sphere can be described as

Where,
a = Radius
z = Distance to the magnetic field
I = Current
Permeability constant in free space
Our values are given as
diameter of the sphere then,

Thus z = a



Re-arrange to find I,



Therefore the current at the pole of this sphere is 
C.
The range of temperatures on Earth allows water to exist in all of its states.
897+103=1000
2x106=212
6.92x104=719.68
1.34x102=136.68
109x1=109
Answer:
The kinetic energy of the arrow is equaled to the potential energy of the stretching of the bow, which in this case is 50 J.
Explanation:
Potential energy converts to kinetic as soon as it begins to move.