Answer:
1.8 cm
Explanation:
= mass of the singly charged positive ion = 3.46 x 10⁻²⁶ kg
= charge on the singly charged positive ion = 1.6 x 10⁻¹⁹ C
=Potential difference through which the ion is accelerated = 215 V
= Speed of the ion
Using conservation of energy
Kinetic energy gained by ion = Electric potential energy lost

= Radius of the path followed by ion
= Magnitude of magnetic field = 0.522 T
the magnetic force on the ion provides the necessary centripetal force, hence

Answer:
1066.67 m
Explanation:
Given:
v₀ = 96 km/h = 26.67 m/s
v = 48 km/h = 13.33 m/s
Δx = 800 m
Find: a
v² = v₀² + 2aΔx
(13.33 m/s)² = (26.67 m/s)² + 2a (800 m)
a = -0.333 m/s²
Given:
v₀ = 26.67 m/s
v = 0 m/s
a = -0.333 m/s²
Find: Δx
v² = v₀² + 2aΔx
(0 m/s)² = (26.67 m/s)² + 2 (-0.333 m/s²) Δx
Δx = 1066.67 m
Round as needed.
Answer:
The time it took the bobsled to come to rest is 10 s.
Explanation:
Given;
initial velocity of the bobsled, u = 50 m/s
deceleration of the bobsled, a = - 5 m/s²
distance traveled, s = 250 m
Apply the following kinematic equation to determine the time of motion of the bobsled;
s = ut + ¹/₂at²
250 = 50t + ¹/₂(-5)t²
250 = 50t - ⁵/₂t²
500 = 100t - 5t²
100 = 20t -t²
t² - 20t + 100 = 0
t² -10t - 10t + 100 = 0
t (t - 10) - 10(t - 10) = 0
(t - 10)(t - 10) = 0
t = 10 s
Therefore, the time it took the bobsled to come to rest is 10 s.
Answer:
21.5 m
Explanation:
A car has an initial speed of 31.4 km/hr
Convert to m/s
= 31.4 × 1000/3600
= 31,400/3600
= 8.722 m/s
Acceleration = 1.2 m/s^2
Time= 1.3 seconds.
Therefore the displacement can be calculated as follows
S= 8.722 × 1.3 + 1/2 × 1.2 × 1.3^2
= 11.34 + 1/2 × 20.28
= 11.34 + 10.14
= 21.5 m
The distance you should cover is: S=150 km
Your average speed is: v=50 km/h
Therefore, to calculate the time you will take to cover this distance, we can use the basic relationship between space, distance and time, and we find:

so, you will take 3 hours.