Answer:
After finding the electric potential VP at point P = Q/Чπϵ₀L ㏑(1+
)
Explanation:
I believe it is a part C question.
The derivative of V and P will be directly proportional to the differential dq and the inverse of Чπϵ₀δ........
Please find detailed solution in the attached picture as i believe that is the answer to the part C question you are seeking for.
Answer:
As indicated by Newton's law of attraction each article or body in the universe draws in every single item towards one another and that power of fascination is straightforwardly relative to the result of their masses and contrarily corresponding to the square of the distance between them.
The power of gravity between two articles will diminish as the distance between them increments. The two most significant elements influencing the gravitational power between two items are their mass and the distance between their focuses. As mass increments, so does the power of gravity, however an increment in distance mirrors a reverse proportionality, which makes that power decline dramatically.
At that point by Newton's All inclusive Law of Attractive energy;
F=GMm/R^2
Mm= result of the majority
R=Distance Between the two masses by focus.
On the off chance that R is multiplied, new force=GMm/(2R)^2
=GMm/4R^2
Unique Power/New Force=4/1
F/4=New Power
By "solution" it means a course of action that, once carried out, brings about some desired state of affairs. The use of engineer in this context is as a verb meaning "to arrange or bring about through skillful, artful contrivance."
Answer:
R = 36.885 km
Explanation:
In order to distinguish the two planes we must use the Rayleigh criterion that establishes two distinguishable objects if in their diffraction the central maximum of one coincides with the first minimum of the other
The diffraction equation for slits is
a sin θ = m λ
the first minimum occurs for m = 1
sin θ = λ a
as the diffraction experiments the angles are very small, we approximate
sin θ = θ
θ = λ / a
This expression is for a slit, in the case of circular objects, when solving the system in polar coordinates, a numerical constant appears, leaving the expression of the form
θ = 1.22 λ / a
In this problem they give us the frequency, let's find the wavelength with the relation
c = λ f
λ = c / f
θ = 1.22 c/ f a
since they ask us for the distance between the planes, we can use the definition of radians
θ = s / R
if we assume that the distance is large, we can approximate the arc to the horizontal distance
s = x
we substitute
x / R = 1.22 c / fa
R = x f a / 1.22c
Let's reduce the magnitudes to the SI system
f = 9000 MHz = 9 109 Hz
a = 15 m
x = 100 m
let's calculate
R = 100 10⁹ 15 / (1.22 3 108)
R = 3.6885 10⁴ m
let's reduce to km
R = 3.6885 10¹ km
R = 36.885 km
Had to look for the given illustration attached to this question and here is my answer. The site on the cross section provided wherein it is the most likely place for a spring would be SITE C. In the image, it is labeled sites A, B, C, and D. Hope this answers your question.