Explanation:
(a) The given data is as follows.
Pressure on top (
) = 140 bar =
(as 1 bar =
)
Temperature =
= (15 + 273) K = 288 K
Density of gas = 


= 0.4548

=
= 
Hence, pressure at the natural gas-oil interface is
.
(b) At the bottom of the tank,

= 2.206 \times 10^{7} Pa + 700 \times 9.81 \times (6000 - 4700)[/tex]
= 
= 309.8 bar
Hence, at the bottom of the well at
pressure is 309.8 bar.
Molarity is expressed as:
Molarity = moles / liter
Given that the cell is rod-shaped, its volume is calculated using the formula for a cylinder's volume:
V = πr²L
V = π * (0.6)² * 4.9
V = 5.54 μm³
1 Liter = 10³ mm³
1 mm = 10³ μm
1 mm³ = 10⁹ μm³
1 liter = 10¹² μm³
So the volume in liters is:
5.54 x 10⁻¹² L
Moles = molarity * liters
Moles = 0.0029 * 5.54 x 10⁻¹²
Moles = 1.61 x 10⁻¹⁴
To get the number of molecules, we multiply the moles by Avagadro's number
Number of molecules = 1.61 x 10⁻¹⁴ * 6.02 x 10²³
There are 9.69 x 10⁹ molecules in the cell
Answer:
they are inversly related
Explanation:
As the force increases distance decreases .They are related with an equation
F= Gm1×m2/r^2