In fresh water sound waves travel at 1497m/s at 25 degrees, I'll assume that's the characteristics of the water.
If it's 0.01s then you need to divide the speed by 100 to get the, 14.97, however it gets there and back in that time so you need to halve it.
<u>7.485m</u>
<u>Answer:</u>
C. There are trillions of galaxies in the universe.
<u>Explanation:</u>
A. is wrong as nebulae are found inside galaxies and inside the universe, not inside stars.
B. is wrong because there are trillions of galaxies in the universe, not the latter.
D. The solar system consists of the eight planets, the Sun, comets, meteors, dwarf planets, and is inside the Milky Way galaxy and thus cannot have galaxies inside it.
<em>Please give Brainliest</em>
Answer:
The cooling time will not be reduced.
Explanation:
The time to cook is virtually the same in both types, vigorously and gently boiling water.
The reason cooking of spaghetti calls for vigorously boiling water is to keep the pasta agitated so that they do not stick to one another.
The temperature of boiling water is the same for both vigorously boiling water and gently boiling water, therefore there will be little time difference in when the potatoes will cook when it is done with vigorously boiling water than when it is cooked with gently boiling water.
However cooking potatoes in vigorously boiling water may cause the water to dry up on time and the potatoes get burnt.
Answer:
a = 1.764m/s^2
Explanation:
By Newton's second law, the net force is F = ma.
The equation for friction is F(k) = F(n) * μ.
In this case, the normal force is simply F(n) = mg due to no other external forces being specified
F(n) = mg = 15kg * 9.8 m/s^2 = 147N.
F(k) = F(n) * μ = 147N * 0.18 = 26.46N.
Assuming the object is on a horizontal surface, the force due to gravity and the normal force will cancel each other out, leaving our net force as only the frictional one.
Thus, F(net) = F(k) = ma
26.46N = 15kg * a
a = 1.764m/s^2