Answer:
Hari didn't plan to go abroad
Explanation:
Abroad planned to go to hari.
When you first pull back on the pendulum, and when you pull it back really high the Potential Energy is high and the Kinetic Energy is low, But when up let go, and it gets right around the middle, that's when the Potential energy transfers to Kinetic, at that point the kinetic Energy is high and the potential Energy is low. But when it comes back up at the end. The same thing will happen, the Potential Energy is high, and the Kinetic Energy is low. Through all of that the Mechanical Energy stays the same.
I hope this helps. :)
Brainliest?
Answer:
Check the explanation
Explanation:
The escape velocity is the velocity needed by any object to overcome the gravitational force of the planet on which it’s present. Now we know that the gravitational force is directly proportional to the mass of the planet and inversely proportional to the distance of the object from the center of planet.
If we keep the mass of earth constant and decrease the size of the earth than this will decrease the distance between the object and the center of the earth and thus the gravitational force that will act on the body will increase substantially which will in turn increase the value of the escape velocity.
The value of escape velocity will keep on increasing as the size of the earth will shrink till it reaches to a point when the value of escape velocity becomes more than the speed of light and since it’s impossible to travel with a speed greater than the speed of light and therefore at this point it will become impossible for a spacecraft to escape the earth.
Answer: 22.6 hours
Explanation:
The power is the measure of the rate of energy.
In this problem, the 12.0 V battery is rated at 51.0 Ah, which means it delivers 51.0 A of current in a time of t = 1 h = 3600 s. The power delivered by the battery can be written as

where
I is the current
V = 12.0 V is the voltage of the battery
So the energy delivered by the battery can be written as

Where

So the energy delivered is

At the same time, the headlight consumes 27.0 W of power, so 27 Joules of energy per second; Therefore, it will remain on for a time of:
