A light year is a unit of distance. It is a distance that light can travel in a years time which is six trillion miles. It is used to measure the distances in space. To take one example, the distance to the next nearest big galaxy, the Andromeda Galaxy, from earth is 21,000,000,000,000,000,000 km.
Do you understand it? <span />
Speed =dist./time
=73.4/5
=14.68 km/hr
Answer:
this is a no brainer
Explanation:
As air pressure in an area increases, the density of the gas particles in that area increases.
Answer:
The impulse on the object is 60Ns.
Explanation:
Impulse is defined as the product of the force applied on an object and the time at which it acts. It is also the change in the momentum of a body.
F = m a
F = m(
)
⇒ Ft = m(
-
)
where: F is the dorce on the object, t is the time at which it acts, m is the mass of the object,
is its initialvelocity and
is the final velocity of the object.
Therefore,
impulse = Ft = m(
-
)
From the question, m = 3kg,
= 0m/s and
= 20m/s.
So that,
Impulse = 3 (20 - 0)
= 3(20)
= 60Ns
The impulse on the object is 60Ns.
This question is incomplete; here is the complete question:
Marco is conducting an experiment. He knows the wave that he is working with has a wavelength of 32.4 cm. If he measures the frequency as 3 hertz, which statement about the wave is accurate?
A. The wave has traveled 32.4 cm in 3 seconds.
B. The wave has traveled 32.4 cm in 9 seconds.
C. The wave has traveled 97.2 cm in 3 seconds.
D. The wave has traveled 97.2 cm in 1 second.
The answer to this question is D. The wave has traveled 97.2 cm in 1 second.
Explanation:
The frequency of a wave, which is in this case 3 hertz, represents the number of waves that go through a point during 1 second. According to this, if the frequency of the wave is 3 hertz this means in 1 second there were 3 waves. Moreover, if you multiply the wavelength (32.4cm) by the frequency (3) you will know the distance the wave traveled in 1 second: 32.4 x 3 = 97.2 cm. This makes option D the correct one as the distance in 1 second was 97.2 cm.