To establish the age of a rock or a fossil, researchers use some type of clock to determine the date it was formed. Geologists commonly use radiometric dating methods, based on the natural radioactive decay of certain elements such as potassium and carbon, as reliable clocks to date ancient events.
Answer:
Explanation:
24 - gauge wire , diameter = .51 mm .
Resistivity of copper ρ = 1.72 x 10⁻⁸ ohm-m
R = ρ l / s
1.72x 10⁻⁸ / [3.14 x( .51/2)² x 10⁻⁶ ]
= 8.42 x 10⁻² ohm
= .084 ohm
B ) Current required through this wire
= 12 / .084 A
= 142.85 A
C )
Let required length be l
resistance = .084 l
2 = 12 / .084 l
l = 12 / (2 x .084)
= 71.42 m
Michelaneglo DDDDDDDDDDDDDDDDDDDDDDDDD
1. Vpa = 180m/s. @ 0 deg.
Vag = 40m/s @ 120 deg,CCW.
<span>
Vpg = Vpa + Vag,
Vpg = (180 + 40cos120) + i40sin120,
Vpg = 160 + i34.64,
Vpg=sqrt((160)^2 + (34.64)^2)=163.7m/s.
</span>
<span>2. tanA = Y / X = 34.64 / 160 = 0.2165,
A = 12.2 deg,CCW. = 12.2deg. North of
East. </span>
3. 1 hr = 3600s. <span>d = Vt = 163.7m/s * 3600s = 589,320m.
hope this helps</span>
The complete question is;
A circular coil consists of N = 410 closely winded turns of wire and has a radius R = 0.75 m. A counterclockwise current I = 2.4 A is in the coil. The coil is set in a magnetic field of magnitude B = 1.1 T.
a. Express the magnetic dipole moment μ in terms of the number of the turns N, the current I, and radius
R.
b. Which direction does μ go?
Answer:
A) μ = 1738.87 A.m²
B) The direction of the magnetic moment will be in upward direction.
Explanation:
We are given;
The number of circular coils;
N = 410
The radius of the coil;R = 0.75m
The current in the coils; I = 2.4 A
The strength of magnetic field;
B =1.1T
The formula for magnetic dipole moment is given as;
μ = NIA
Where;
N is number of turns
I is current
A is area
Now, area; A = πr²
So, A = π(0.75)²
Thus,plugging in relevant values, the magnetic dipole moment is;
μ = 410 * 2.4 * π(0.75)²
μ = 1738.87 A.m²
B) According to Fleming's right hand rule, the direction of the magnetic moment comes out to be in upward direction.