Answer:
Arrange an annual service. Treat your boiler like your car. ...
Keep your boiler clean. ...
Bleed your radiators. ...
Top up the pressure. ...
Use a Powerflush. ...
Insulate your pipes. ...
Turn the heating on. ...
If all else fails…
Explanation:
The object takes 0.5 seconds to complete one rotation, so its rotational speed is 1/0.5 rot/s = 2 rot/s.
Convert this to linear speed; for each rotation, the object travels a distance equal to the circumference of its path, or 2<em>π</em> (1.2 m) = 2.4<em>π</em> m ≈ 7.5 m, so that
2 rot/s = (2 rot/s) • (2.4<em>π</em> m/rot) = 4.8<em>π</em> m/s ≈ 15 m/s
thus giving it a centripetal acceleration of
<em>a</em> = (4.8<em>π</em> m/s)² / (1.2 m) ≈ 190 m/s².
Then the tension in the rope is
<em>T</em> = (50 kg) <em>a</em> ≈ 9500 N.
Answer:
False
Explanation:
Balanced forces result in a net force of 0N. This means no direction or acceleration change will be applied to the object. A torque may be applied, but with no other external forces, the object will not move.
This is a "trick" question.
If the elevator is traveling at constant speed, it means it is at rest. This means anything inside the elevator traveling at constant speed, weights the same as in an elevator not moving -also at rest-.
So the 100N weight's weight doesn't change in an elevator traveling at constant speed.