Answer:
1 sec
Explanation:
Horizontal distance (x) = 6m
Vertical distance (y) = 1.25m
Hang time is the duration the object is in the air before it reaches maximum height.
The time of free fall is given by
t = √2y/g
g = acceleration due to gravity
t = √(2*1.25)/9.8
t = √2.5/9.8
t = 0.5secs
Hang time = 2*0.5
= 1 sec
The correct answer is 223 days.
The relationship between the duration of revolution and the separation between the sun is shown by Kepler's third law. Using the notions of circular motion and the gravitational and centripetal forces, we may obtain this equation.
According to Kepler's third rule, the semi-major axis of an orbit is linked to the orbital period of a planet around the sun as follows:
p² = a³
where an is the semi-major axis/distance to the star and p is the orbital period in years.
It is said that a = 0.72 AU for Venus.
P= √(0.72 AU)^3 = 0.61 years.
365 days in a year = 222.9 ≈ 223 days.
To learn more about Kepler's third rule refer the link:
brainly.com/question/1608361
#SPJ4
The density of the material would be 4.1 g/cm³.
Density is calculated by dividing the mass by the volume.
D=m÷v
D=45 g÷11 cm³
D=4.1 g/cm³
A. The particles are packed more tightly in materials with more density which causes the vibrations to bounce of the partials more rapidly which makes them go faster
The first one is electrical energy