Answer:
p=28
Step-by-step explanation:
5p=140
To to find the value of p divide both sides by 5 (5p/5 and 140/5)
p=28!
Answer:
x = 2, -2, -1/5
Step-by-step explanation:
g(x)= 5x^3+x^2-20x-4
g(x)= x^2(5x+1)-4(5x+1)
g(x)=(x^2-4)(5x+1)
g(x)=(x-2)(x+2)(5x+1)
x-2=0
x= 2
x+2=0
x= -2
5x+1=0
x= -1/5
Answer: (0,0),(0,4), and (5,0)
Step-by-step explanation:
It is easy to find lengths of horizontal and vertical segments and distances from (0,0) so always place one vertex at the origin and one or more sides on an axis.
This answer has an x intercept and y intercept.
Answer:
![4x^{3} y^{2} (\sqrt[3]{4 x y})](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20y%5E%7B2%7D%20%28%5Csqrt%5B3%5D%7B4%20x%20y%7D%29)
Step-by-step explanation:
Another complex expression, let's simplify it step by step...
We'll start by re-writing 256 as 4^4
![\sqrt[3]{256 x^{10} y^{7} } = \sqrt[3]{4^{4} x^{10} y^{7} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B256%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D%20%3D%20%5Csqrt%5B3%5D%7B4%5E%7B4%7D%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D)
Then we'll extract the 4 from the cubic root. We will then subtract 3 from the exponent (4) to get to a simple 4 inside, and a 4 outside.
![\sqrt[3]{4^{4} x^{10} y^{7} } = 4 \sqrt[3]{4 x^{10} y^{7} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B4%5E%7B4%7D%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D%20%3D%204%20%5Csqrt%5B3%5D%7B4%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D)
Now, we have x^10, so if we divide the exponent by the root factor, we get 10/3 = 3 1/3, which means we will extract x^9 that will become x^3 outside and x will remain inside.
![4 \sqrt[3]{4 x^{10} y^{7} } = 4x^{3} \sqrt[3]{4 x y^{7} }](https://tex.z-dn.net/?f=4%20%5Csqrt%5B3%5D%7B4%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D%20%3D%204x%5E%7B3%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%5E%7B7%7D%20%7D)
For the y's we have y^7 inside the cubic root, that means the true exponent is y^(7/3)... so we can extract y^2 and 1 y will remain inside.
![4x^{3} \sqrt[3]{4 x y^{7} } = 4x^{3} y^{2} \sqrt[3]{4 x y}](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%5E%7B7%7D%20%7D%20%3D%204x%5E%7B3%7D%20y%5E%7B2%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%7D)
The answer is then:
![4x^{3} y^{2} \sqrt[3]{4 x y} = 4x^{3} y^{2} (\sqrt[3]{4 x y})](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20y%5E%7B2%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%7D%20%3D%204x%5E%7B3%7D%20y%5E%7B2%7D%20%28%5Csqrt%5B3%5D%7B4%20x%20y%7D%29)