Answer:

Explanation:
<h3>
Organelles and their function:</h3><h3><u>Lysosomes:</u></h3>
- Lysosomes functions in the digestion of food of the cell.
- It contains hydrolytic enzymes.
<h3><u>Vacuole:</u></h3>
- Vacuole mostly functions in storage.
<h3><u>Mitochondrion:</u></h3>
- Mitochondrion is the power house of the cell.
<h3><u>Ribosome:</u></h3>
- Ribosome functions in protein synthesis.
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Heat the water up a little
Answer:
The total heat required is 691,026.36 J
Explanation:
Latent heat is the amount of heat that a body receives or gives to produce a phase change. It is calculated as: Q = m. L
Where Q: amount of heat, m: mass and L: latent heat
On the other hand, sensible heat is the amount of heat that a body can receive or give up due to a change in temperature. Its calculation is through the expression:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the change in temperature (Tfinal - Tinitial).
In this case, the total heat required is calculated as:
- Q for liquid water. This is, raise 248 g of liquid water from O to 100 Celsius. So you calculate the sensible heat of water from temperature 0 °C to 100° C
Q= c*m*ΔT

Q=103,763.2 J
- Q for phase change from liquid to steam. For this, you calculate the latent heat with the heat of vaporization being 40 and being 248 g = 13.78 moles (the molar mass of water being 18 g / mol, then
)
Q= m*L

Q=562.0862 kJ= 562,086.2 J (being 1 kJ=1,000 J)
- Q for temperature change from 100.0
∘
C to 154
∘
C, this is, the sensible heat of steam from 100 °C to 154°C.
Q= c*m*ΔT

Q=25,176.96 J
So, total heat= 103,763.2 J + 562,086.2 J + 25,176.96 J= 691,026.36 J
<u><em>The total heat required is 691,026.36 J</em></u>
Kinetic energy is the correct answer for this question