heating is repeated to ensure all water molecules have evaporated
Answer:
The answer is "Choice A and Choice B"
Explanation:
The Zero-Order reactions are usually found if a substrate, like a surface or even a catalyst, is penetrated also by reactants. Its success rate doesn't depend mostly on the amounts of the various reaction in this reaction.
Let the Rate = k
As
doesn't depend on reaction rate, a higher reaction rate does not intensify the reaction.
By the rate
the created based and the reaction rate is about the same.
<span>To answer this question, you need to change the sodium phosphate unit into mol and doing the reaction. Sodium phosphate or Na3PO4 molecular weight is 163.94 or 164 rounded up. Then the amount should be: 492g/ (164g/mol)= 3 mol
For every 1 mol of </span>Na3PO4 there are 4 mol of oxygen element. To made 1 mol of O2 molecule, you will need 2 mol oxygen element. Then the amount of oxygen should be: 4/2 * 3 mol= 6 mol * 6.02 * 10^23= 36.12 * 10*23= 3.61 * 10^24
<u><em>Answer</em></u>
<u><em>Explanation</em></u>
- In periodic table, the elements have almost same properties are present in the same group. As Mg and Sr are present in group II-A, so both behave most likely to each other due to having same valence shell electrons as well.
- Si and Sn are present in group IV-A which have same behavior but different one from Mg due to different groups.
- S is present in group VI-A which show different properties from all others one especially from Mg.
Answer:
The amount of heat that is released is -925.2 cal
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
Sensible heat is the amount of heat that a body can receive or release without affecting its molecular structure, that is, it does not change the state (solid, liquid, gaseous). In other words, sensible heat is the amount of heat that a body absorbs or releases without any changes in its physical state.
The equation that allows to calculate heat exchanges is:
Q = c * m * ΔT
Where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature.
In this case:
- c= 1

- m= 25.7 g
- ΔT= Tfinal - Tinitial= 49 °C - 85 °C= -36 °C
Replacing:
Q= 1
*25.7 g* (-36 C)
Solving:
Q= -925.2 cal
<u><em>The amount of heat that is released is -925.2 cal</em></u>