Answer:
"2Ω" is the net resistance in the circuit.
Explanation:
The given resistors are:
R1 = 3Ω
R2 = 6Ω
The net resistance will be:
⇒ 
On substituting the values, we get
⇒ 
On taking L.C.M, we get
⇒ 
⇒ 
⇒ 
On applying cross-multiplication, we get
⇒ 
Answer:
CB = 4.45 x 10⁻⁹ F = 4.45 nF
Explanation:
The capacitance of a parallel plate capacitor is given by the following formula:
C = ε₀A/d
where,
C = Capacitance
ε₀ = Permeability of free space
A = Area of plates
d = Distance between plates
FOR CAPACITOR A:
C = CA = 17.8 nF = 17.8 x 10⁻⁹ F
A = A₁
d = d₁
Therefore,
CA = ε₀A₁/d₁ = 17.8 x 10⁻⁹ F ----------------- equation 1
FOR CAPACITOR B:
C = CB = ?
A = A₁/2
d = 2 d₁
Therefore,
CB = ε₀(A₁/2)/2d₁
CB = (1/4)(ε₀A₁/d₁)
using equation 1:
CB = (1/4)(17.8 X 10⁻⁹ F)
<u>CB = 4.45 x 10⁻⁹ F = 4.45 nF</u>
Answer:
Explanation:
The acceleration of gravity is 9.8m/s^2.
So to calculate the time it will take to make the ball stop(which btw means the ball now reach its greatest height), use the formula V1=V0+at. V1 is the final velocity(which is 0), V0 is the starting velocity(which is 30m/s), and the a(cceleration) is 9.8m/s^2.
(You can ignore the fact "at" is -30 instead 30, it's because the directions two velocity travel are opposite. )
We can now know the time it takes to make the ball stop just by the gravitational force is about 3 sec.
Use another formula S=1/2at^2, to find out the S(height) is 1/2*9.8*3^2=44.1, which is approximately D.45m .
The acceleration and distance is related to the following expression:
y=v0*t + a*t^2/2 ; v0=0
y=44.1*100/2 = 2205m
hence, the speed will be
v=0 + a*t = 441m/s
from that height it will just be subjected to the gravitational acceleration
0=v_acc^2 -2g*y_free
y_free = v_acc^2/2g = 9922.5m
<span>y_max = y_acc+y_free = 441+9922.5 =10363.5m</span>
There are two atoms of potassium bonded to one atom of sulfur.