a) Copper is at a higher temperature, so the flow of heat will take place from copper to iron. Heat is a form of energy, which always flows from higher temperature to lower temperature.
b) To determine the actual final temperature, the heat capacity of the calorimeter must be known. A calorimeter constant refers to a constant, which quantifies the heat capacity of a calorimeter. It may be determined by using a known amount of heat to the calorimeter and measuring the corresponding change in temperature of the calorimeter.
Answer:
The molar entropy of the evaporation of Trichlorofluoromethan is 83.516 J/molK.
Explanation:
Entropy :It is defined as amount of energy which is unable to do work or the measurement of randomness or disorderedness in a system.

Molar heat of molar vaporization of Trichlorofluoromethane = 24.8 kJ/mol
Temperature at which Trichlorofluoromethan boils , T= 296.95 K
The molar entropy of the evaporation of Trichlorofluoromethan :

The molar entropy of the evaporation of Trichlorofluoromethan is 83.516 J/molK.
CaCl2
All of the other choices are elements
Answer:
M(Fe₂O₃) = 159.70 g/mol
M(CO) = 28.01 g/mol
M(Fe) = 55.85 g/mol
M(CO₂) = 44.01 g/mol
Explanation:
We can calculate the molar mass of a compound by summing the molar masses of the elements that form it.
Fe₂O₃
M(Fe₂O₃) = 2 × M(Fe) + 3 × M(O) = 2 × 55.85 g/mol + 3 × 16.00 g/mol = 159.70 g/mol
CO
M(CO) = 1 × M(C) + 1 × M(O) = 1 × 12.01 g/mol + 1 × 16.00 g/mol = 28.01 g/mol
Fe
M(Fe) = 1 × M(Fe) = 1 × 55.85 g/mol = 55.85 g/mol
CO₂
M(CO₂) = 1 × M(C) + 2 × M(O) = 1 × 12.01 g/mol + 2 × 16.00 g/mol = 44.01 g/mol
Answer:
An ion is charged because the number of electrons does not equal the amount of particles.
Explanation:
Can be positive (meaning more protons than electrons) and it can be negatively charged (meaning there are more electrons than protons).
Hope this helps!