Work done can be calculated from force and distance the object moves.
The equation relating work done, force and distance is,

Given the force acting on the object = 289 N
Distance the object moves = 29 m
Calculating the work done from force and distance:
Work = Force * Distance
= 289 N * 29 m
= 8381 J
= 
Answer:
gamma rays > X-rays > ultraviolet radiation > visible light > infrared > radio waves.
Explanation:
Electromagnetic waves are those waves that require no material medium for propagation. They can travel through space and they all move at the speed of light.
Electromagnetic waves are composed of both electric and magnetic fields which are mutually at right angles to each other.
The order of decreasing energy of electromagnetic waves is;
gamma rays > X-rays > ultraviolet radiation > visible light > infrared > radio waves.
Answer:
c) (12×0.9889) + (13×0.01108)
Explanation:
Given data:
Percentage of C-12 = 98.89%
Percentage of C-13 = 1.108%
Atomic mass = ?
Solution:
98.89/100 = 0.9889
1.108/ 100 = 0.01108
Atomic mass = (12×0.9889) + (13×0.01108)
Atomic mass = (11.8668 + 0.144034)
Atomic mass = 12.01084
Answer:
The pressure of CH3OH and HCl will decrease.
The final partial pressure of HCl is 0.350038 atm
Explanation:
Step 1: Data given
Kp = 4.7 x 10^3 at 400K
Pressure of CH3OH = 0.250 atm
Pressure of HCl = 0.600 atm
Volume = 10.00 L
Step 2: The balanced equation
CH3OH(g) + HCl(g) <=> CH3Cl(g) + H2O(g)
Step 3: The initial pressure
p(CH3OH) = 0.250atm
p(HCl) = 0.600 atm
p(CH3Cl)= 0 atm
p(H2O) = 0 atm
Step 3: Calculate the pressure at the equilibrium
p(CH3OH) = 0.250 - X atm
p(HCl) = 0.600 - X atm
p(CH3Cl)= X atm
p(H2O) = X atm
Step 4: Calculate Kp
Kp = (pHO * pCH3Cl) / (pCH3* pHCl)
4.7 * 10³ = X² /(0.250-X)(0.600-X)
X = 0.249962
p(CH3OH) = 0.250 - 0.249962 = 0.000038 atm
p(HCl) = 0.600 - 0.249962 = 0.350038 atm
p(CH3Cl)= 0.249962 atm
p(H2O) = 0.249962 atm
Kp = (0.249962 * 0.249962) / (0.000038 * 0.350038)
Kp = 4.7 *10³
The pressure of CH3OH and HCl will decrease.
The final partial pressure of HCl is 0.350038 atm