Answer:
C8H17N
Explanation:
Mass of the unknown compound = 5.024 mg
Mass of CO2 = 13.90 mg
Mass of H2O = 6.048 mg
Next, we shall determine the mass of carbon, hydrogen and nitrogen present in the compound. This is illustrated below:
For carbon, C:
Molar mass of CO2 = 12 + (2x16) = 44g/mol
Mass of C = 12/44 x 13.90 = 3.791 mg
For hydrogen, H:
Molar mass of H2O = (2x1) + 16 = 18g/mol
Mass of H = 2/18 x 6.048 = 0.672 mg
For nitrogen, N:
Mass N = mass of unknown – (mass of C + mass of H)
Mass of N = 5.024 – (3.791 + 0.672)
Mass of N = 0.561 mg
Now, we can obtain the empirical formula for the compound as follow:
C = 3.791 mg
H = 0.672 mg
N = 0.561 mg
Divide each by their molar mass
C = 3.791 / 12 = 0.316
H = 0.672 / 1 = 0.672
N = 0.561 / 14 = 0.040
Divide by the smallest
C = 0.316 / 0.04 = 8
H = 0.672 / 0.04 = 17
N = 0.040 / 0.04 = 1
Therefore, the empirical formula for the compound is C8H17N
Answer:
d = all are premise of KMT.
Explanation:
A
Gas particles are extremely small and have relatively large distance between them.
B
Gas particles are continuously moving in random, straight-line motion as they are collide with each other and the container walls.
C
The average kinetic energy of gas particles is proportional to the temperature of gas.
All these are the premise of kinetic molecular theory. According to kinetic molecular theory, the particles pf gases are very small and randomly move in the available space. They move freely in straight line and colloid with each other and also the wall of container. This collision is elastic. As molecules strike with each other and walls of container their energy increases, and they gets warmer. So their kinetic energy is proportional to the temperature because mass of particle is constant.
Answer:
0.0872 M
Explanation:
Use the equation M1V1 = M2V2
0.436(50.0) = (x)(250.0)
21.8 = 250x
0.0872 = x
Explanation:
it contains 6.02*1023atoms