Gravity and air resistance
i took the test and got 100%
Yea it’s called the Saffir-Simpson Hurricane scale, made in 1960s and further developed in 1970s
Explanation:
First we will convert the given mass from lb to kg as follows.
157 lb = 
= 71.215 kg
Now, mass of caffeine required for a person of that mass at the LD50 is as follows.

= 12818.7 mg
Convert the % of (w/w) into % (w/v) as follows.
0.65% (w/w) = 
= 
= 
Therefore, calculate the volume which contains the amount of caffeine as follows.
12818.7 mg = 12.8187 g = 
= 1972 ml
Thus, we can conclude that 1972 ml of the drink would be required to reach an LD50 of 180 mg/kg body mass if the person weighed 157 lb.
Answer:
ΔF=125.22 %
Explanation:
We know that drag force on the car given as

=Drag coefficient
A=Projected area
v=Velocity
ρ=Density
All other quantity are constant so we can say that drag force and velocity can be given as

Now by putting the values



Percentage Change in the drag force



ΔF=125.22 %
Therefore force will increase by 125.22 %.
Answer;
It allows the muscles time to heal.
Explanation;
-It is very important to rest muscles between workouts. In fact, resistance training breaks down muscles causing microscopic tears. It is only during rest when the muscle-building process is stimulated and the regeneration of new tissue occurs.
-But when muscles are not allowed adequate rest and recover time, the regeneration process cannot occur. This can have several side effects such as increased soreness, decreased strength and performance, and may lead to injury.