For the answer to the question above, first find out the gradient.
<span>m = rise/run </span>
<span>=(y2-y1)/(x2-x1) </span>
<span>the x's and y's are the points given: "After three hours, the velocity of the car is 53 km/h. After six hours, the velocity of the car is 62 km/h" </span>
<span>(x1,y1) = (3,53) </span>
<span>(x2,y2) = (6,62) </span>
<span>sub values back into the equation </span>
<span>m = (62-53)/(6-3) </span>
<span>m = 9/3 </span>
<span>m = 3 </span>
<span>now we use a point-slope form to find the the standard form </span>
<span>y-y1 = m(x-x1) </span>
<span>where x1 and y1 are any set of point given </span>
<span>y-53 = 3(x-3) </span>
<span>y-53 = 3x - 9 </span>
<span>y = 3x - 9 + 53 </span>
<span>y = 3x + 44 </span>
<span>y is the velocity of the car, x is the time.
</span>I hope this helps.
C) Acceleration is the rate of change of velocity of an object. Velocity is the speed and direction of an object so acceleration is used to describe the rate of change. I hope this helps!!
Answer:
577g
Explanation:
Given parameters:
Temperature change = 5.9°C
Amount of heat lost = 427J
Unknown:
Mass of the block = ?
Solution:
The heat capacity of a body is the amount of heat required to change the temperature of that body by 1°C.
H = m c Ф
H is the heat capacity
m is the mass of the block
c is the specific heat capacity
Ф is the temperature change
Specific heat capacity of lead is 0.126J/g°C
m = H / m Ф
m =
= 577g
Mass of the lead block is 577g
Answer:Density: The molecules of a liquid are packed relatively close together. Consequently, liquids are much denser than gases. The density of a liquid is typically about the same as the density of the solid state of the substance. ... Compression would force the atoms on adjacent molecules to occupy the same region of space.
Explanation: